FICHE COMMERCIALE

Climatisation |

Poutre climatique

Une solution de chauffage et de rafraîchissement valorisante pour la HQE

La poutre climatique Inoha® est une unité terminale de traitement d'air qui utilise à la fois l'eau et l'air comme fluide caloporteur.

La poutre s'inscrit dans un système global comprenant une pompe à chaleur pour la production d'énergie, une centrale de traitement d'air double-flux à récupération d'énergie pour la préparation de l'air, et un système global de régulation pour les différents composants.

- Son design intègre les contraintes architecturales D'une hauteur réduite, la poutre est intégrable dans les faux-plafonds et elle peut également participer au design des locaux par sa ligne agréable et simple. Sa maintenance et son nettoyage sont aisés et peu fréquents.
- **L'apport d'air hygiénique** requis fonctionne avec une batterie sèche sans condensats et l'apport d'air neuf est supérieur au minimum réglementaire.
- La poutre climatique Inoha® peut être couplée avec une centrale double-flux à récupération d'énergie. Cette solution est en adéquation avec les exigences de la Réglementation Thermique, et les constructions de bâtiments HQE à haute performance énergétique.

Unité terminale à induction particulièrement adaptée aux labels de construction à économie d'énergie et de haute qualité

- Économies d'énergie
- Maintenance aisée et peu fréquente
- Apport d'air neuf supérieur au minimum règlementaire
- Confort thermique maîtrisé grâce à une grande qualité de diffusion de l'air
- Réglage des portées par obturation des buses 0, 50, 100 %
- Confort acoustique optimisé par l'absence de moto-ventilateur

Utilisation

Inoha® est particulièrement adaptée pour les locaux suivants : bureaux paysagers ou fermés, salles de réunion, chambres d'hôtels, chambres d'hébergement en milieu hospitalier.

Avantages

- · Très fort taux d'induction.
- · Poutre active fermée.
- · Maîtrise parfaite des veines d'air.
- · Hauteur réduite et encastrement en faux-plafond, tous types de profil : té standard, fine line...
- · Portée réglable.

→ Gamme

- Longueur : de 900 à 3000 mm.
- Largeur: 595 mm ou 295 mm (en faux-plafond de 600 ou de 300).
- Hauteur: 200 mm quelle que soit la largeur.
- Portée réglable : 0 % (suppression d'une direction de diffusion), 50 % ou 100 %.

Désignation

Inoha

Type: 2 tubes, 2 tubes + 2 fils, 4 tubes

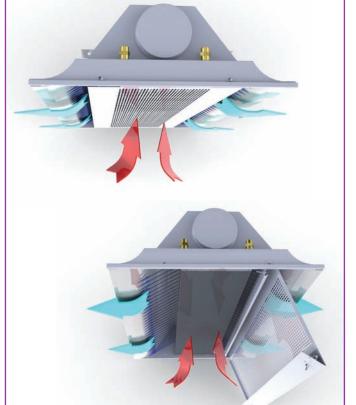
Largeur : 300 ou 600 mm Longueur : 900, ou de 1200 à 3000 mm

600 x 900

→ Application / utilisation

- Particulièrement adapté en chambres d'hôpitaux, en open space,
- Bâtiments dans lesquels les apports internes en humidité sont modérés, avec un air primaire déshumidifié en amont et une enveloppe de bâtiment limitant les infiltrations.
- Besoins en refroidissement sensible inférieurs à 120 W/m² et même 80 W/m² pour des locaux à activité très sédentaire.

Exemple hôpital de Limoges : réalisation de chambres climatiques avec poutres.


→ Construction / composition

Solutions RT - Grenelle

- La technologie des poutres climatiques permet d'apporter un confort élevé sans aucune consommation d'auxiliaire. Ce terminal à eau glacée traite le bâtiment et apporte les débits d'air hygiénique à partir d'une production globale et centralisée.
- Fonctionnement en free cooling possible,
- Maintenance minimale (pas de condensats, pas de pièces tournante...).
- Absence de filtration terminale,
- Surventilation nocturne,
- Couplage avec centrale double-flux à récupération d'énergie.
- · Grille ouvrante sur charnière pour accessibilité au nettoyage de la batterie.
- Effet pare vision de la grille pour un design épuré (perforation à 50 %).
- Buses latérales d'induction encastrées et très discrètes permettant d'obtenir des taux d'induction très élevés.
- · Raccordement facilité par le piquage sur la longueur ou sur la largeur de la poutre.
- Hauteur réduite pour un encastrement faux-plafond / 200 mm.
- Raccordement de la batterie à eau à axe vertical pour simplifier la mise en place.
- Maintien de la grille par clips ressort des 2 côtés.

→ Texte de prescription

- Sa hauteur réduite de 200 mm lui permettra un encastrement facilité en faux-plafond en largeur 600 ou 300 mm.
- · Les veines d'air seront maîtrisées. L'accès à la batterie se fera par simple ouverture de la grille sans dépose.
- Type Inoha®, marque France Air.

Descriptif technique

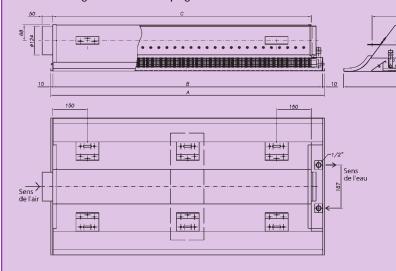
→ Performances

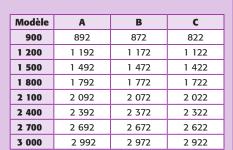
- Dimensionnement précis et complet avec différents régimes d'eau et les conditions réelles d'exploitation sur simple demande.
- Produit testé en conditions réelles de fonctionnement
- Très bon effet Coanda.

• Sélection rapide

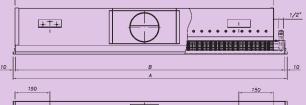
Induction 100 % - Climatisation - Delta T eau : 15-18 °C - Température ambiante de 26 °C en 2 tubes.

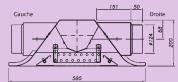
Longueur de poutre	Débit d'air en m³/h	40	50	55	60	65	70	80	90	100	115	120	180
	Puissance totale en W	477	618	730	724	779	823						
	Débit d'eau en l/h	95	125	134	145	155	165						
900	Pertes de charges sur l'air en Pa	40	63	76	90	106	123						
	Pertes de charges sur l'eau en Kpa	0,61	0,88	1,06	1,65	1,54	1,88						
	Lp en dB (A)*	< 20	< 20	< 20	20	22	24						
	Puissance totale en W	560	673	729	786	849	906	1022	1128				
	Débit d'eau en l/h	120	140	150	160	175	185	210	230				
1 200	Pertes de charges sur l'air en Pa	23	35	43	51	59	69	90	114				
	Pertes de charges sur l'eau en Kpa	1,03	1,52	1,77	2,22	2,9	3,32	4,27	5,03				
	Lp en dB (A)*	< 20	< 20	< 20	< 20	< 20	< 20	21	24				
	Puissance totale en W		736	801	814	939	1005	1123	1239	1293	1451	1574	
	Débit d'eau en l/h		160	170	190	200	215	240	260	200	220	320	
1 800	Pertes de charges sur l'air en Pa		16	19	23	26	31	40	51	63	83	90	
	Pertes de charges sur l'eau en Kpa		3,36	4,02	5,24	5,79	6,62	8,04	9,24	5,79	6,91	13,5	
	Lp en dB (A)*		< 20	< 20	<20	< 20	< 20	< 20	< 20	< 20	< 20	21	
	Puissance totale en W				889	953	1019	1150	1269	1312	1475	1626	
	Débit d'eau en l/h				190	205	220	245	265	200	220	340	
2 100	Pertes de charges sur l'air en Pa				16	19	22	29	37	45	60	65	
	Pertes de charges sur l'eau en Kpa				6,1	7,05	8,06	9,77	11,18	6,74	8,06	17,48	
	Lp en dB (A)*				< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	
	Puissance totale en W						1 033	1 170	1 295	1 417	1 602	1 593	2 234
	Débit d'eau en l/h						220	250	280	300	340	250	340
2 400	Pertes de charges sur l'air en Pa						17	22	28	35	46	50	112
	Pertes de charges sur l'eau en Kpa						9,08	11,27	13,83	15,7	19,78	11,27	19,78
	Lp en dB (A)*						< 20	< 20	< 20	< 20	< 20	< 20	26
	Puissance totale en W								1 342	1 472	1 597	1 653	2 277
	Débit d'eau en l/h								290	320	340	260	340
3 000	Pertes de charges sur l'air en Pa								18	22	27	32	72
	Pertes de charges sur l'eau en Kpa								18,39	22,16	24,68	15,23	24,68
	Lp en dB (A)*								> 20	< 20	< 20	< 20	20


^{*} Niveau de pression sonore avec une atténuation de 5dB. 4° de delta T sur l'eau. 3° de delta T sur l'eau.

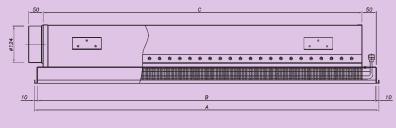


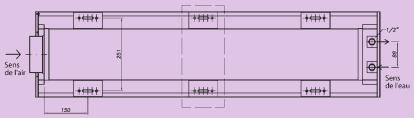
Descriptif technique

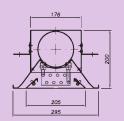

→ Encombrement


• Modèle largeur 600 mm - Piquage axial - 2 T

• Modèle largeur 600 mm - Piquage latéral - 2 T




droite ou gauche

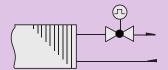

150	150	Piquage latéral au choix d
Gauche		
350		Sens de l'eau
Droite	<u>+++</u> +++++++++++++++++++++++++++++++++	

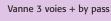
Modèle	A	В	С		
900	900 892		822		
1 200	1 200 1 192		1 122		
1 500	1 492	1 472	1 422		
1 800 1 792		1 772	1 722		
2 100	2 092	2 072	2 022		
2 400	2 392	2 372	2 322		
2 700	2 692	2 672	2 622		
3 000 2 992		2 972	2 922		

• Modèle largeur 300 mm - 2 T

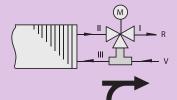
Modèle	Α	В	С
900 892		872	805
1 200 1 192		1 172	1 105
1 500 1 492		1 472	1 405
1 800	1 792	1 772	1 705
2 100	2 092	2 072	2 005
2 400	2 392	2 372	2 305
2 700	2 692	2 672	2 605
3 000	2 992	2 972	2 905

Régulation


→ Vannes


- Pression nominale: 16 bars.
- Lorsque la tige est poussée à l'intérieur, la voie de réglage est fermée.
 Corps de vanne nickelée en fonte de laiton.
- Tige en acier inox.
- Glycol maximum 40 %.
 Température de service 2 ... 120 °C.
 Voie réglage exponentielle.
 Voie mélange linéaire réduit.

- Course de vanne 3,7 mm.


Vanne 2 voies

→ Servomoteurs de vannes

Ils devront être 0/10V ou 3P en fonction du thermostat ou du régulateur choisi.

		MODULANT				
Modèle		AXM				
Туре		1	117 S			
		F200	F202	F402		
Version				1100		
Poussée/N		140	120	120		
Temps de marche/s		75	60	60		
Tension	230 V	✓				
Tension	24 V		✓	· •		
Signal do váglago	3 points	✓	/			
Signal de réglage	010 V (réglable)			✓		
Sens d'action : normalement ouvert		✓	V	V		
Câble de 1 m		✓	V	V		

→ Les régulateurs d'ambiance autonomes pour les poutres climatiques

			1		1	

Plus de détails nous consulter.