> Our technology. Your success. Pumps • Valves • Service

Pumps and Automation 2014

Our tradition: Competence since 1871

Introduction

We have supplied generations of customers worldwide with pumps, valves, automation products and services. A company with that kind of experience knows that success is a process based on a stream of innovations. A process made possible by a close working alliance between developer and user, between production and practice.

> Partners achieve more together. We do everything possible to ensure that our customers always have access to the ideal product and system solution. KSB is a loyal partner. And a strong one:

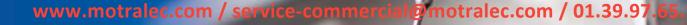
- Over 140 years' experience
- Present in more than 100 countries
- More than 16,000 employees
- More than 160 service centres worldwide
- Approximately 2,600 service specialists

Type Series Index

Amacan K	46	FFU	62	Multitec-RO	61
Amacan P	46	FGD	49	MZ	52
Amacan S	46				
Amacontrol	66	HGB / HGC / HGD	57	Omega	55
Ama-Drainer 400 – 500	41	HGM	57		
Ama-Drainer 80, 100	42	HGM-RO	61	PSR	59
Ama-Drainer-Box	43	HHD	50	PumpDrive	65
Ama-Drainer-Box Mini	43	HK (Nikkiso-KSB)	34	PumpMeter	66
Ama-Drainer N 301 – 358	41	HN (Nikkiso-KSB)	34		
AmaDS ³	43	HPH	30	RC / RCV	62
Amajet	47	НРК	30	RDLO	55
Amaline	47	HPK-L	30	RDLP	55
Amamix	47	HT (Nikkiso-KSB)	34	RER	59
Ama-Porter CK Pump Station	44	HVF	51	RHD	59
Ama-Porter F / S	42	HX (Nikkiso-KSB)	31	RHM	60
Amaprop	47	HY (Nikkiso-KSB)	31	RHR	60
Amarex KRT	45	Hya-Compact K	40	Rio-Eco Therm N	24
Amarex KRT dry-installed	45	Hya-Compact VP	40	Rio-Eco Z N	25
Amarex KRT wet / dry-installed	45	Hya-Eco VP	40	Rio-Therm N	24
Amarex N S32	45	Hyamaster ISB	65	Riotherm	24
Amarex N	45	Hyamaster SPS	65	Rotex	42
Amarex N CK Pump Station	44	Hyamat IK, IV, IVP	41	RPH	35
API-Serie (Nikkiso-KSB)	36	Hyamat K	40	RPHb	35
		Hyamat V	40	RPHmdp	35
BEV	53	Hyamat VP	41	RPH-RO	61
Beveron	58	Hya-Rain / Hya-Rain N	37	RPH-V	35
BOA-Systronic	66	Hya-Rain Eco	37	RSR	59
		Hya-Solo EV	39	RUV	59
Calio	25	Hya-Solo D	39	RVM	60
Calio S	25	Hya-Solo DV	39	RVR	60
Calio Therm S	25	hyatronic N	64	RWCP / RWCN	37
Cervomatic EDP.2	63	hyatronic spc	65		
CHTA / CHTC / CHTD	57			S 100D / UPA 100C	52
CHTR	36	ILN / ILNE / ILNS	27	Salino Pressure Center	61
CINCP / CINCN	36	ILNC / ILNCE / ILNCS	27	Secochem Ex	33
CK 800-Eu Pump Station	44	INVCP / INVCN	36	Secochem Ex K	33
Compacta	43	IPR	62	Sewatec / Sewabloc	48
Controlmatic E	63	Ixo	38	SEZ / SEZT / PHZ / PNZ	58
Controlmatic E.2	63			SNW / PNW	58
CPKN	32	KWP / KWP-Bloc	48	SPY	58
CTN	35			SuPremE	63
		LCC-M	49		
DN (Nikkiso-KSB)	34	LCC-R	49	ТВС	49
		LCV	49		
Etabloc	28	LevelControl Basic 2	64	UPA 150C	52
Etabloc PumpDrive	28	LHD	50	UPA 200, 200B, 250C	52
Etabloc SYT / Etaline SYT	31	LSA-S	48	UPA 300, 350	53
Etachrom BC	28	LUV / LUVA	57	UPA Control	64
Etachrom BC PumpDrive	29	LUV Nuclear	60	UPZ, BSX-BSF	53
Etachrom NC	29			Vitacast	56
Etachrom NC PumpDrive	29	Magnochem	32	Vitachrom	56
Etaline	26	Magnochem-Bloc	33	Vitalobe	56
Etaline PumpDrive	26	Mega	50	Vitaprime	56
Etaline-R	26	MegaCPK	32	Vitastage	56
Etaline Z	26	MegaCPK PumpDrive/PumpMeter	32	VN (Nikkiso-KSB)	34
Etaline Z PumpDrive	26	MDX	50		
Etanorm / Etanorm-R	28	MHD	50	WBC	48
Etanorm GPV / CPV	29	mini-Compacta	43	WKTB	58
Etanorm PumpDrive	28	MK / MKY	42	WKTR	37
Etanorm SYT / RSY	31	Movitec PumpDrive	54		
Etaprime B / BN	51	Movitec V / LHS / VS / VC	54	YNKR	36
Etaprime L	51	Movitec VCI	54	YNK	57
Etaseco / Etaseco-l	33	Movitec VME	38		
Etaseco RVP	33	Multi Eco	38	ZW	51
Evamatic-Box	44	Multi Eco-Pro	38		
		Multi Eco-Top	38		
Filtra N	39	Multitec	54		
FFS	62	Multitec PumpDrive	54		

Our spare parts and services: Dependability at your call

We tailor our services to enable new ways of individually optimising our products. They underscore our far-reaching sense of customer responsibility. That commitment starts before any orders – for example with sound advice on financing options. And it goes far beyond product arrival. A dependable partnership with KSB lasts for years.


In addition to spare parts, we offer our customers a plethora of services around pumps, valves, and other rotating equipment – also for non-KSB products:

- Technical consultancy
- Services provided on-site and in our service centres
- Maintenance inspection management
- Reverse engineering / retrofit
- TPM[®] Total Pump Management
- SES System Efficiency Services

Which is how we secure the long-term value of our customers' facilities.

Ready where you are. KSB runs more than 160 service centres around the world. Some 3,000 highly trained KSB specialists are on call to install, commission and maintain your equipment. So you can plan for a future free of unwanted surprises. And we also provide on-site training sessions. They ensure that operators can use KSB pumps and valves and systems efficiently and profitably, day in, day out.

Our mission: Certified quality assurance

First-class products and excellent service take top priority at KSB. To maintain this level of excellence, we have developed a modern quality management system with globally applicable guidelines. It is based on the Business Excellence model of the European Foundation for Quality Management, which already ensures improved quality management Europewide.

Our guidelines define uniform quality for all KSB locations and have helped us to optimise our manufacturing processes. The results are shorter delivery times and global availability of our products. These guidelines govern the way we act so comprehensively that even the competence of our consulting and the good value for money we offer are clearly stipulated. Like the 'Made in Germany' quality seal, we introduced internal certification as a sign of the highest quality: 'Made by KSB'.

Our five key goals:

- Maximum customer satisfaction: We do everything to fulfil our customers' wishes on time and in full.
- Fostering quality awareness: We put our quality commitment into daily practice – from executives to employees, whose qualifications and competence we foster through continuing training.
- **Prevention rather than cure:** We systematically analyse errors and prevent the causes.
- Improvement in quality: We continually optimise our processes in order to work more efficiently.
- Involvement of suppliers: We attach great importance to working together fairly and openly to achieve our shared goals.

In addition to quality, energy efficiency also plays an important role at KSB. Our products already fulfil the statutory minimum efficiency values of the ErP regulations for 2015, making a valuable contribution at the component level. You can potentially save even more energy by optimising your entire plant with the FluidFuture[®] energy efficiency concept.

As a signatory to the United Nations Global Compact, KSB is committed to endorsing the ten principles of the international community in the areas of human rights, labour standards, environmental protection and anticorruption.

6

Pumps			Fluid Future®		Factory-automated	Automation possible	Water Transport and Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Type / Application	Type series	Page	Flui	ErP	Fact	Aut	Wat Trea	Indu	Ene	Buil	Soli
Circulator / hot water service pumps, fixed speed	Riotherm	24				•					
Drinking water circulator pumps, fixed speed	Rio-Therm N	24									
Drinking water circulator pumps,	Rio-Eco Therm N	24									
variable speed	Calio Therm S	25									
	Calio S	25									
Circulator pumps, variable speed	Calio	25									
	Rio-Eco Z N	25									
	Etaline / Etaline Z	26									
	Etaline PumpDrive	26									
In-line pumps with fixed /	Etaline Z PumpDrive	26									
variable speed drive	Etaline-R	26									
	ILN / ILNE / ILNS	27									
	ILNC / ILNCE / ILNCS	27									
	Etanorm / Etanorm-R	28									
	Etanorm PumpDrive	28									
	Etabloc	28									
	Etabloc PumpDrive	28									
Standardised / close-coupled pumps, fixed / variable speed	Etachrom BC	28									
pumps, fixed / variable speed	Etachrom BC PumpDrive	29									
	Etachrom NC	29									
	Etachrom NC PumpDrive	29									
	Etanorm GPV / CPV	29									
Hot water pumps	HPK-L / HPK / HPH	30									
	Etanorm SYT / RSY	31									
Hot water / thermal oil pumps	Etabloc SYT / Etaline SYT	31									
Thermal oil pumps with magnetic	HX (Nikkiso-KSB)	31									
drive or canned motor	HY (Nikkiso-KSB)	31									
	МедаСРК	32									
Standardised chemical pumps	MegaCPK PumpDrive / PumpMeter	32									
	CPKN	32									
	Magnochem	32									
	Magnochem-Bloc	33									
Seal-less pumps	Etaseco / Etaseco-l	33									
	Etaseco RVP	33									
	Secochem Ex / Secochem Ex K	33							-		

Pumps			FluidFuture®		Factory-automated	Automation possible	Water Transport and Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Type / Application	Type series	Page	Flu	ErP	Fac	Ν	Wa Tre	Ind	Ene	Bui	Sol
	HN (Nikkiso-KSB)	34									
	HT (Nikkiso-KSB)	34									
Seal-less pumps	HK (Nikkiso-KSB)	34									
	VN (Nikkiso-KSB)	34									
	DN (Nikkiso-KSB)	34									
	RPH	35									
	RPHb	35									
	RPH-V	35									
	RPHmdp	35									
	CTN	35									
	API series (Nikkiso-KSB)	36									
Process pumps	CHTR	36									
	YNKR	36									
	CINCP / CINCN	36									
	INVCP / INVCN	36									
	RWCP / RWCN	37									
	WKTR	37									
Deinsseten hen setime erstenen	Hya-Rain / Hya-Rain N	37									
Rainwater harvesting systems	Hya-Rain Eco	37									
	Multi Eco	38									
	Multi Eco-Pro	38									
Domestic water supply /	Multi Eco-Top	38									
swimming pools	Movitec VME	38									
	Ixo	38									
	Filtra N	39									
	Hya-Solo EV	39									
	Hya-Solo D	39									
	Hya-Solo DV	39									
	Hya-Compact K	40									
Process houston autom	Hya-Compact VP	40									
Pressure booster systems	Hya-Eco VP	40									
	Hyamat K	40									
	Hyamat V	40									
	Hyamat VP	41									
	Hyamat IK, IV, IVP	41									

Pumps			FluidFuture®	ο.	Factory-automated	Automation possible	Water Transport and Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Type / Application	Type series	Page	Ηſ	ErP	Fa	Au	Š ₽	lne	En	Bu	So
	Ama-Drainer N 301, 302, 303, 358	41									
	Ama-Drainer 400/10 400/35 500/10/11	41									
Drainage pumps /	Ama-Drainer 80, 100	42									
waste water pumps	Ama-Porter F / S	42									
	Rotex	42									
	ΜΚ / ΜΚΥ	42									
	AmaDS ³	43									
	Ama-Drainer-Box	43									
	Ama-Drainer-Box Mini	43									
	mini-Compacta	43									
Lifting units / pump stations	Compacta	43									
	CK 800-Eu Pump Station	44									
	Ama-Porter CK Pump Station	44									
	Amarex N CK Pump Station	44									
	Evamatic-Box	44									
	Amarex N S32	45									
	Amarex N	45									
Submersible motor pumps	Amarex KRT	45									
	Amarex KRT dry-installed	45									
	Amarex KRT, wet / dry-installed	45									
	Amacan K	46									
Submersible pumps in discharge tubes	Amacan P	46									
	Amacan S	46									
	Amamix	47									
Mixers / agitators /	Amaprop	47									
tank cleaning units	Amajet	47									
	Amaline	47									
	Sewatec / Sewabloc	48									
Pumps for solids-laden fluids	KWP / KWP-Bloc	48									
	WBC	48									
	LSA-S	48									
	LCC-M	49									
Slurry pumps	LCC-R	49									
	ТВС	49									
	LCV	49									
	FGD	49									
	Mega	50									

Pumps			Fluid Future [®]	ErP	Factory-automated	Automation possible	Water Transport and Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Type / Application	Type series	Page	Ē	Ъ	Ъ	Ā	≥⊧	2	ш	B	Š
	HHD	50									
	MHD	50									
Slurry pumps	LHD	50									
	MDX	50									
	ZW	51									
	HVF	51									
	Etaprime L	51									
Self-priming pumps	Etaprime B / BN	51									
	MZ	52									
	S 100D / UPA 100C	52									
	UPA 150C	52									
Cubmarrible barebala numne	UPA 200, 200B, 250C	52									
Submersible borehole pumps	UPA 300, 350	53									
	UPZ, BSX-BSF	53									
	BEV	53									
	Movitec V / LHS / VS / VC	54									
	Movitec VCI	54									
High-pressure pumps, fixed / variable speed	Movitec PumpDrive	54									
·	Multitec	54									
	Multitec PumpDrive	54									
	Omega	55									
Axially split pumps	RDLO	55									
	RDLP	55									
	Vitachrom	56									
	Vitacast	56									
Hygienic pumps	Vitaprime	56									
	Vitastage	56									
	Vitalobe	56									
	CHTA / CHTC / CHTD	57									
	HGB / HGC / HGD	57									
	HGM	57									
	YNK	57									
Pumps for power station	LUV / LUVA	57									
conventional islands	WKTB	58									
	SEZ / SEZT / PHZ / PNZ	58									
	SNW / PNW	58									
	Beveron	58									
	wentional islands WKTB 58 Image: Constraint of the second sec										

10

Pumps Type / Application	Type series	Page	FluidFuture®	ErP	Factory-automated	Automation possible	Water Transport and Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	RER	59									
	RSR	59									
	RUV	59									
	PSR	59									
Duran fan muda en mennen alamte	RHD	59									
Pumps for nuclear power plants	LUV Nuclear	60									
	RHM	60									
	RVM	60									
	RHR	60									
	RVR	60									
	RPH-RO	61									
Pumps for desalination	HGM-RO	61									
by reverse osmosis	Multitec-RO	61									
	SALINO Pressure Center	61									
Desitive displacement numer	RC / RCV	62									
Positive displacement pumps	IPR	62									
Fire fighting systems	FFS	62									
Fire-fighting systems	FFU	62									

Automation and drives Type / Application	Type series	Page	FluidFuture [®]	ErP	Water Transport and Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Automation and drives	SuPremE	63							
	Controlmatic E	63							
	Controlmatic E.2	63							
Control with	Cervomatic EDP.2	63							
Control units	LevelControl Basic 2	64							
	UPA Control	64							
	hyatronic N	64							
	PumpDrive	65							
	hyatronic spc	65							
Speed control systems	Hyamaster ISB	65							
	Hyamaster SPS	65							
	PumpMeter	66							
Monitoring and diagnostic systems	Amacontrol	66							
Control system	BOA-Systronic	66							

All trademarks or company logos shown in the catalogue are protected by trademark rights owned by KSB Aktiengesellschaft and/or a KSB Group company. The absence of the "®" symbol should not be interpreted to mean that the term is not a registered trademark.

Fluids	d Riotherm		Rio-Therm N	a Rio-Eco Therm N	_		Calio Calio	Rio-Eco Z N	a	Etaline	Etaline Z	Etaline Pumpurive	Etaline-R		_	_	Etanorm / Etanorm-R	Etabloc	Etabloc PumpDrive	Etachrom BC	Etachrom BC PumpDrive	Etachrom NC	Etachrom NC PumpDrive Etanorm GPV / CPV	_	_	HPH	_	Etanorm SYT / RSY	Etabloc SY I / Etaline SY I
Activated sludge Aggressive liquids	Circulator / hot water service pumps, fixed speed	Drinking water circulator pumps, fixed speed	-[Drinking water circulator pumps, variable speed		rculator pumps, variable speed			variable speed drive	-			-			ble speed				_		-		sdund	-				-
Brackish water	xed	xed s		able		able			beed							able											- lio	5	
Brine	s, fij	s, fi)		/aria		/aria		_	le sp							/aria	- 1					_		Hot water					
Cleaning agents	- du	dun	_	, v 		ps, v		_	ariab				_			∖/pa				-		-		Hot			ther		_
Condensate Coolant	- b	or p	-	mu —	_	mu-	_	-	-	_		-	-	_	-	, fixed	_	-		_		-	_	-			har /		-
Cooling lubricant	servi	culat	-	ator		ator			fixed	-						pumps,		-				-					- Wat		-
Cooling water	ter :	. circ				rcula			vith	П						nd p											E T		
Corrosive liquids	t wa	/ater		er cli		Ū			v sqr							uple													
Digested sludge	/ ho	ng v		wate					In-line pumps							close-coup												Щ	
Dipping paints	ator	inkii				-		-	line			_	-		_	clos		-		_		_		-				H	-
Distillate Drinking water	- ula	<u> </u>				-	_	-	Ļ		-	-	_			ised /			-	-	-		-	-	-		-		-
Explosive liquids	- 🖸 💻	-	- "			-				-	-	-	-					-	-	-	-	7	-		_	-	-		-
Feed water	-					-										Standard		-		_	_						ī.		-
Filtered water																St													
Fire-fighting water																1	- 1												
Flammable liquids	-	-	_	-	_	_	_	_		_			_	_	_	-	_	_				-			_	_	-1	-	_
Fuels Gas-containing liquids		-	-	-	_	-	_	-		_			-		-	-	_	-	_	_		-	_	-	_	_	-	-	_
Harmful liquids	-	-			-	-	-			_	_	-	-		-	-	-	-	-	_		-		-	_		-		-
Heating water	-									Π						ī	T.												
High-temperature hot water														1		I													
Highly aggressive liquids		_	_	-		-		_					_		_							_		_			-		
Hot water		-						Е		님						<u> </u>			-	_	-			-			-		-
Industrial service water Inorganic liquids		-	-			-	-	-						-		-			-	-	-			-	_	-	-		-
Liquefied gas	-	-				-				_		-	-		-	-	-	-	-	_		-			-				-
Liquids in food and beverage production	-																												
Lubricants																													
Oils																1											_		
Organic liquids		-	_	-	_	_	_	_				_	_	_	_	-	_	_				_		-				-	_
Pharmaceutical fluids Polymerizing liquids		-	-		_	-	-	-		_			-	_	-	-	-	-	_	_		-		-	_	_	-	-	-
Rainwater / stormwater		-			-	-	-	-		_		-	-		-	-	-			_		-			_		-		
Raw sludge		-			_	-	_						T		-	-				_					_		-		_
River, lake and ground water																Ī													
Seawater													_	_				_							_				
Service water			•			-		_								1									_		_	\square	_
Sewage with faeces Sewage without faeces				-		-	_						-		-	-		-				-			_	_	-	H	
Sewage without faeces Slurries				-		-	-			-	_		-					-		_	_	-			_			H	-
Slurries (ore, sand, gravel, ash)							-	_		-			-					1		_					_			H	
Solvents																													
Swimming-pool water																l	1												
Thermal oil	_			_		-						_	_					-				_						9	
Toxic liquids			_	-		-				_			-					-		_		-					-	H	-
Valuable liquids Volatile liquids	-					-				-						-				_		-			-	-	-		-
Wash water				-		-				-			-					-		_		-			-			H	-
Wash water						-		-			-					-	_		-	_		-	-	-		-	-		-

															-	()							
	MegaCPK MegaCPK Pumpdrive														101	apt series (inikkiso-kJB) Chtr						z	
8B)	pdri			Magnochem-Bloc Etaseco / Etaseco-I	2		S (B)) (B)	SB)	SB)					- in	KISO						Hya-Rain / Hya-Rain N Hva-Rain Eco	
50-K	Pun		E	B-me	۷P	Щ	EX I	- Y-0	So-K	20-K					/Mill	(NIK		NCN INC				/ Hy	
likkis ikkis	CPK		oche	oche	C R	hem	hem iikki	ikkis	ikkis	likki				dp		erries		0/C		2		ain	
HX (Nikkiso-KSB) HY (Nikkiso-KSB)	MegaCPK MegaCPK	PKN	Magnochem	Magnochem-Bloc Etasero / Etasero	Etaseco RVP	Secochem Ex	Secochem Ex K HN (Nikkiso-KSR)	HT (Nikkiso-KSB)	HK (Nikkiso-KSB) VN (Nikkiso-KSB)	DN (Nikkiso-KSB)		RPH	RPH-V	RPHmdp		API SE CHTR	YNKR	CINCP / CINCN	RW/CP / RW/CN	WKTR		Hya-Rain / Hy Hva-Rain Fco	
		S S	2	2 4		S	ΥT	; T	I >		_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	: ~	~	0 <	4 0	~	0 :	= ~		_	тт	Activated sludge
motor	sdund										sdunc										ster		Aggressive liquids
canned		ess I									ocess										lg s)		Brackish water
	chemi	I-lea			1			1			5					_		_			estir	_	Brine
e or		×	-		-	-		1		-				-			-				าลท	_	Cleaning agents
driv	rdise	_	\vdash	-		-	-			-	-		-				-				ater	-	Condensate Coolant
magnetic drive	Standardised				-					-											Rainwater harvesting systems		Cooling lubricant
nagr	Sta							i T		Ξ.											Rai		Cooling water
with n																							Corrosive liquids
N SC		_								_													Digested sludge
sdund		-	H						_	-	-	-	_		_			_		_		_	Dipping paints
			H							5	-	-	-		-		_					-	Distillate Drinking water
		-	H							Ξ.			-				-	- 1				-	Explosive liquids
Therma		-			-			-				_		_						_			Feed water
														I									Filtered water
_										_	_							_	_				Fire-fighting water
					_			1			<u> </u>												Flammable liquids
		-	-		_	-		<u> </u>		-	<u> </u>			-		-	-	_	_	-		_	Fuels
		-								10					÷			-	-	-		-	Gas-containing liquids Harmful liquids
		-				Ē																	Heating water
								1															High-temperature hot water
										а,								_					Highly aggressive liquids
			-			-	-			_				_	_	_		_				_	Hot water
		-		-										Ξ.		-		-	_	-		-	Industrial service water Inorganic liquids
		-			-	F.								-	Ť								Liquefied gas
_										-						_							Liquids in food and beverage production
																							Lubricants
																							Oils
_					1			1															Organic liquids
				-	_					-				-	-	-		_	_			_	Pharmaceutical fluids
		-	8	-	_	-				-													Polymerizing liquids Rainwater / stormwater
_			\vdash	-		-				-						-							Raw sludge
_										-													River, lake and ground water
		_																					Seawater
_					1					_					_					-			Service water
		_			_					-		_	-		-				_	_		_	Sewage with faeces
_		_									-	-	-		-	_		-				-	Sewage without faeces Slurries
_			\vdash			-				-			-										Slurries (ore, sand, gravel, ash)
											T								_	_			Solvents
																							Swimming-pool water
					_					_	-		_		1	_							Thermal oil
		_	H							-	-		-	_				_					Toxic liquids Valuable liquids

..........

.

Valuable liquids

Volatile liquids

Wash water

Waste water

		Multi Eco Multi Eco-Pro Multi Eco-Top	Movitec VME Ixo		o EV	Hya-Solo D Hya-Solo DV	Der K	Hya-Compact VP	VP	×	VP	Hyamat IK, IV, IVP		Ama-Drainer N 301, 302, 303, 358 Ama-Drainer 400/10 400/35 500/10/11	ainer 80. 100	Ama-Porter F / S		ΚΥ	
Fluide		Multi Eco Multi Eco- Multi Eco-	ovite(tra N	Hya-Solo EV	a-Sol	a-Cor	a-Cor	Hya-Eco VP	Hyamat K	Hyamat V Hvamat VP	amat		na-Dr na-Dr	Da-Dr	Ja-Po	tex	MK / MKY	
Fluids	_		ы х	Ē	ΗÂ	НУ	ΎΗ	È À	Ę	H.	ун Ч	_	_	An	Ā	Αu	Ro	ž	
Activated sludge Aggressive liquids	swimming pools	_	-		CIII.	_		-		_	-	-	sdund	-	-	_	-		
Aggressive inquids Brackish water	ng p		-	honctar cvctamc				-					ir pu		÷	-			
Brine	nmi			-ter				-					water		r		T		
Cleaning agents	swii												waste \						
Condensate				Precente									Wa						
Coolant	ldns		_	Prec	<u> </u>		_	_		_	_		sdu	_	-	_			
Cooling lubricant Cooling water	ater		-	-	-			-			-		und						
Corrosive liquids	Domestic water supply		-	-	-			-					Drainage pumps		-		-		
Digested sludge	nesti		_										Drair				-		
	Don																		
Distillate										_									
Drinking water	-		-	-	-					_			-		-	_	-		
Explosive liquids Feed water	-	-	-	-1	-		-	-		-	-		-	-	÷	-	÷	_	
Filtered water	-	_	-	-	-		_	-		-			-		-	-	-		
Fire-fighting water										_					Г				
Flammable liquids																			
Fuels	-	_	_	_	-		_			_	_	_	-		_	_	_		
Gas-containing liquids	-	_	-	-	-	_	-	-		-		-	-	-	-	-	-	_	
Harmful liquids Heating water	-	_		-	-		-	-		-			-	_	-	-	-	_	
High-temperature hot water	-			-	-			-		_				-	r		E		
Highly aggressive liquids																			
Hot water										_									
Industrial service water	-		_	-	-			-	-				-				-		
Inorganic liquids	-	_	-	-	-		-	-		-	_	-	-	-	-	_	-		
Liquids in food and beverage production	-	_	-	-	-		_	-		-			-		-	-	-		
Lubricants															T		1		
Oils																			
Organic liquids				_	_			_					-						
Pharmaceutical fluids Polymerizing liquids				-				-				_	-		-		-		
Rainwater / stormwater				-											-		-		
Raw sludge					-				_						-		-		
River, lake and ground water																			
Seawater																			
Service water	-			_	-			-				_	-				-		
Sewage with faeces Sewage without faeces				-				-									-		
Slurries																	-		
Slurries (ore, sand, gravel, ash)																			
Solvents																			
Swimming-pool water															_		_	-	
Thermal oil		_	-	-	-			-		_	-	_			-		-		
Toxic liquids Valuable liquids				-	-												-		
Valuable liquids				-				-							-		-		
Wash water																	-		
Waste water																			

													1													
						tion	uo						Amarex KRT wet/dry-installed													
			:=		Compacta Pumn Station CK 800-Fu	Ama-Porter CK Pump Station	Amaren N CK Pump Station Evamatic-Box					Amarex KRT dry-installed	/-inst													
		XO	Ama-Drainer-Box Mini	-	LK 80	Pum	dun					y-ins	et/dr											Sewatec / Sewabloc	Х	
		Ama-Drainer-Box	ler-B	mini-Compacta	ion (er CK	Box F		S32		닢	RT dr	RTw											Sew	KWP / KWP-Bloc	
	5	Draii	Drai	Com	Compacta Pump Static	Porte	Amaren N CK Evamatic-Box		Amarex N S32	Amarex N	Amarex KRT	ex K	ex K		Amacan K	Amacan P	can S		'ni	Amaprop	et .	ine		tec/	Š	
		Ama-Drai	Ama-	nini-		Ama-	Amar Evam		Amar	Amar	Amar	Amar	Amar		Amad	Amac	Amad		Amamix	Amap	Amajet	Amaline		sewa	ΥP	
	_			-	_			bs						es		-		_	_	-	-		Pumps for solids-laden fluids		-	Activated sludge
ititions			_		_			sdund					•	e tub				tank cleaning units				_	ן flui			Aggressive liquids
œ	sd_	-	-			-		motor	-		-			narg	-	_	_	eanin			-	-	lade	+	_	Brackish water Brine
iii /	nd /	-	-	-	-	-		le m	-			-		disc	-		-	Ч К			-	-	-sbilo	1	-	Cleaning agents
								Submersible						u so									or so			Condensate
	- 6 	_	_		_	_		nbm	_		_			lund	_		_	Mixers / agitators /			_	_	nps f	_		Coolant
	5_	_	-	_	_	-		- 01	-	-		_		aloie	-		_	agita	_		-	-	- Pun	-	_	Cooling lubricant Cooling water
			-		-				-	-	Ē			mers	-		-	ers /			-			_		Corrosive liquids
													•					Mixe					I			Digested sludge
	-		_		_	_					_		_	-	_		_					_	-	-		Dipping paints
	-	-	-			-		-	-			_		-		-	_	-			-	-	-	-		Distillate Drinking water
	Ŀ	-	-	-	-	-			-	_	-		-	ľ	-	-	-				-		-	-	_	Explosive liquids
																										Feed water
			_			_									_		_					_		_		Filtered water
	-	-	-		-	-		-	_		_		-	-	-		_	-			-	_	-	-		Fire-fighting water Flammable liquids
	Ŀ	-	-		-	-			-		-	-		ŀ	-		_	-	_		-		-	-	-	Fuels
																										Gas-containing liquids
																										Harmful liquids
	ŀ	_	_	_	_	-		-	_		_	_	-	-	-		_				_	_	-	-		Heating water
	-		-						-		-	_	-	-	-	_	-				-	-	-	-		High-temperature hot water Highly aggressive liquids
												1														Hot water
	-	_	_			_					•			-	•							_	-	_		Industrial service water
	-	-	-	_	-	-		-	-		-	_	-	-	-		_	-			-	-	-	-		Inorganic liquids Liquefied gas
		-	-	-	_	-			-	_	-	-		ľ	-	_	-				-		-	-	_	Liquids in food and beverage production
																										Lubricants
											_		_		_									_		Oils
	-	-			-	-					_		-	ŀ	+		_	-			-	_	-	-		Organic liquids Pharmaceutical fluids
	ŀ													-					_			-				Polymerizing liquids
																								1		Rainwater / stormwater
	-	-	_		_				-	-	릞			-	_		_				_	_			_	Raw sludge
	-		-						Η					ŀ	-		-		_		-	-				River, lake and ground water Seawater
	F																									Service water
	-										_		_						_		_			_		Sewage with faeces
	H		-					-	-	-	-			-	-	_	_	-		-	-		-			Sewage without faeces Slurries
	ŀ		-	-					-		-	-		-	-	-	-		_		-	-				Slurries (ore, sand, gravel, ash)
																										Solvents
									_		_	_			_		_							_	_	Swimming-pool water
	ŀ		-						-		-		_	-	-		_			_	-	_	-	+	_	Thermal oil Toxic liquids
	ŀ								-		-			ŀ		_	_				-	-	-	+		Valuable liquids
																										Volatile liquids
			_		_					_	_				_		_		_						_	Wash water
																	_				_					Waste water

Fluids		WBC LSA-S	LCC-M / LCC-R	TBC	FGD	Mega	HHD / WHD / THD / WDX	ZW	HVF		Etaprime L	Etaprime B / BN	ZW	S 100D / UPA 100C	UPA 150C	UPA 200, 200B, 250C	UPA 300, 350	UPZ, BSX-BSF	BEV	Moviter V / VS /VC / LHS	Movitec VCI	Movitec PumpDrive	Multitec	Multitec PumpDrive		Umega סוותם	RDLP		Vitachrom	Vitacast	Vitaprime	Vitastage
Activated sludge	sdr									_	_		Juc.	3					-	<u></u>								_				
Aggressive liquids	Slurry pumps					_			_	Self-priming pumps		_	horehole nume	<u>_</u>				_				_			it pumps			Hygienic pumps				
Brackish water	urry		_		_	-		-	_	ning	_					-	_	_			-	-	-		split			enic	_		-	-
Brine Cleaning agents	_15	_	-		_	-		-	_	prim	-	_		5	-	-	_	-			-	-	-		ally s	_	-	Hygi	-		-	_
Condensate	-	-	-		-	-			_	Self-	-	-			-	-		-				-	2		Axially	i r	1.0	-	-		-	-
Coolant	-		-			-	-		_	•.			Suhmarcihla										_	-		_	-			-		
Cooling lubricant	-												mq							'cduind												
Cooling water													5						4	<u>م</u>												
Corrosive liquids											_					_		_				_				_			Ц			
Digested sludge	_		_			_			_		_		_	-		-		_				-		_		_	_		_		_	
Dipping paints	-	_	_		_	-		_	_		_		-	-		-	_	_		<u>_</u>	_	-	_	_	-		-	-	_	_	_	_
Distillate Drinking water	-	-	-		_	-		-	_	-	-	_	-				-		_ 1	F		2	-					-				-
Explosive liquids	-		-			-	-		_	-	-			E				-	-	E		-	-	-			-			-		-
Feed water	-		-			-			_	-	-			-	-			-			-	-							-			-
Filtered water	-											1																				
Fire-fighting water																											1					
Flammable liquids	_					_			_		_		-	_				_	_	-		_		_	_	_						
Fuels	_		_			_		_	_	-	_		-	-		_		_	_	-	_	_			-	_	_	-	_	_	_	
Gas-containing liquids	-	-	-		-	-		-	_		-	-	-	-	-		_	-	-	H	-	-		-	-	-	-	-	-	-		-
Harmful liquids Heating water		-	-		-	-		-	_	-	-	-	-	-	-	-	-	-	-	-	-	-					-	-	-	-	-	-
High-temperature hot water	-	-	-				-		-		-	-						-			-	-	-	_	_		1					-
Highly aggressive liquids						-														-		-	_	-		-			-			_
Hot water												l																				
Industrial service water	_										_		_													- 5	L.,					
Inorganic liquids	_		_		_	_			_	-	_		-	-	_			_	_	-		_		_	-	_	-					_
Liquefied gas	_	-	-		_	-		-	_	-	_		-	-	_	-		_	_	-	_	-		_	-	_	-	-	-	_		_
Liquids in food and beverage production Lubricants	-	-	-		-	-	_	-	-		-	_	-		-	-	-	-	-			-			-	-	-	-		-		-
Oils	-	-	-		-	-			_	-	-	-		-	-	-		-	-	H		-	Ē	_		-	-	-	-		-	-
Organic liquids	-		-	-	-	-			_			-					-			-	-	-	-	_		-	-		-			-
Pharmaceutical fluids	_																															
Polymerizing liquids																																
Rainwater / stormwater	_	_	_					_	_	-	_		-	-	_			_	_	-		-		-	-	-	-	-	_			_
Raw sludge	-		_			-			_		_		_					-	_	-		-			-			-	-		_	
River, lake and ground water Seawater	-		-			-			_		-	-	_	-		H				-		-		_	_	Ť	÷		-		-	-
Service water	-					-			_			_			Ē	Ħ	Ħ	i		-			Ħ									
Sewage with faeces																										T	Ē					ſ
Sewage without faeces																																
Slurries																				_		_				_	_					
Slurries (ore, sand, gravel, ash)	-					-					_		_	-		-		_	_	-		-	_	_	-	_	_	-	\square		_	
Solvents Swimming-pool water	-		-	_	-	-			_		-	-	_	-	-	-		-	_	-		-	-		-	-	-		-		-	
Swimming-pool water Thermal oil	-		-		-	-			_		-			H		-		-	-	H		-			-	-	-		H			
Toxic liquids						-								-		-			_	-		-										
Valuable liquids																						-										Í
Volatile liquids																																
Wash water						-					_					_		_														
Waste water			П			Е.																										

spine sp	Multitec-RO SALINO Pressure Center RC / RCV IPR FFJ SuPremE PumpMeter	Я	RC / RCV	SALINO Pressure Center	Multitec-RO	HGM-RO		RVR	RHR	RHM BVM	LUV nuclear RHM	RHD	PSR	RUV	RSR	RER	-	Develori SPY	Beveron	SNW / PNW	SEZ / SEZT / PHZ / PNZ	WKTB	LUV / LUVA	TINK 1117/7/1112/0		HGM	HGB / HGC / HGD	CHTA / CHTC / CHTD
Image:		_	_	_	2	2 I	_	_		× a		~ .		~	~	_	_			S	S	>	_		- >	1	, <u> </u>	
Image: Source of the second	b b	 syste	5	_	_	_	- seme		-	_	_	_	_	-		2	r nla		_	_	_		-	_	_	-	_	L
Image: Solution of the second of the seco		ing :	. —	-	_		rse (_	_	_	-	_	-			- 000	-	-	-	-		-	_	-	-		\vdash
Image: Solution of the second of the seco		ighti		-			eve	_		_		-		-	_			-	-		-		-	-	-	-	-	\vdash
Image: Solution of the second of the seco		-f-	2		-		₽	—		-	-			-							-	-	-					
Second		_ Œ	2	-1		-	tion		1.0		i e	T I		ъľ						-		-	-	-				F
Since Since <td< td=""><td>Cooling lubricant</td><td>-</td><td></td><td>-</td><td></td><td></td><td>lina</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></td<>	Cooling lubricant	-		-			lina	-						-	-				-	-						1		
Since Since <td< td=""><td>Cooling water</td><td></td><td>-</td><td>- (</td><td></td><td></td><td>lesa</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>l l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Cooling water		-	- (lesa									5	l l											
Bigened sludge Bigened sludge Digened sludge Digened sludge Digened sludge <td>Corrosive liquids</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>for</td> <td></td>	Corrosive liquids						for																					
Image: Source of the second	Digested sludge						sdu																					Ĺ
Image:		_				_	Pur		_	_		_											_					L
Image: Sector		_	-	_	_	_	_	_		_		_	_	_			_		_		_		-	_		-		L
Feed water Field wate		-	\vdash	-	-	_	-	_	-	-	_	-	_	-	_		-		-	-	-		-	-	-	-	_	⊢
Image: Second		-	H	-	-		-						_	-	-	-	-	-	-	_	-							
Image: Second		-	H	-	-		-		-	-	-	-	-	-			-		-		-		-			-	-	-
Image: Second and the second and th			H		-	-	-	-	-	-	_	-	_				-	-	-	-	-		-	-		-		
Image: Second		-															-			_						-		
Image: Second						-													-							-		
Image: Second	Gas-containing liquids																											
Image: Second		_		_			_					_					_		_									
Image: Second		_	-	_	_	_	_	_	_	_		_		_			_		_				-					
Image: Service water		_	-	_	_	_	_	_		_	_	_	_	_			_				_		-			-		
Industrial service water Inorganic liquids Liquids in food and bevrage production Critical in the food and bevrage production Liquids in the food and bevrage production Critical in the food and bevrage production Liquids in the food and bevrage production Critical in the fo		-	\vdash	-	-	_	-	_	-	-	_	-	_	-	_		-	-	-		-		-	_	-	-	_	⊢
Image: Second		-	H	-	-		-			_	-	-	_	-	_	-				-			-	-	-	-		⊢
Image: Second		-	H	-	-	-	-		-					-			-		-	-	-		-	-	-	-		H
Image: Service water		-	H		-	_	-	-	-					-	_		-		-		-		-	-	-	-	-	-
Image: Second		-				-	-	-	_								-		-	_	-					-		
Image: Second		-										-					-		-		-					-		
Image: Second		-															-									-		
Image: Second																												
Image: Second		_																										L
Image: Second		_	-	_	_	_	_	_	_	_		_		_			_						_			_		
Image: Second secon		-	\vdash		_		-		_	_	_	_		_	_		-		-	-		_	_	-	-	-	-	-
Image: Second of the second		-	\vdash	_	_	_	-	_	_	_	_	_	-	_	-				-	_		_	-		-	-		-
Image: Service water			\vdash				-		-	_	-	-	-	-			-		_	_	_	_	-	-	-	-		H
Image: Sewage with faces Image: Sewige with faces Image: Sewige with faces Image: Se		_	_			-	-	_	-	_	-	-	-	-	-				-	_	_	_	-	-		-		H
Image: Sewage without faces Image: Sewige without faces <td></td> <td></td> <td>H</td> <td>-</td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td>_</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>			H	-				_	-	_		-		-			_	_				_	-			-		
Image: Sector of the sector																	_	_	-									
Image: Solution of the second of the seco																												
Image: Solution of the second of the seco																												
Image: Second	Solvents																											E
Image: Constraint of the second se																												
Valuable liquids																												
									_			_																L
		_	\square		_	_				_		_		_			_		_				_			-		L
	Volatile liquids	-	\vdash				_			_		_					-		_			_	_		_	-		L
Image: Second			\vdash	_	_	_		_	_	_		-		-	-		-		-	_	_	_	-	-	-	-	_	H

					1																						Ľ					
																						9	e	ç	A						Ļ	_
												ve	Irive			NCS	4	Ϋ́.	rive	-	IVe	Etachrom PC PrimoDrino	mpurin	Etachrom NC BumnDrivo	- DV						Etanorm SYT / RSY Etabloc SVT / Etaline SVT	
		2	z	Rio-Eco Therm N	m S			z				Etaline PumpDrive	Etaline Z PumpDrive		ILN / ILNE / ILNS	ILNC / ILNCE / ILNCS	ł	Etanorm / Etanorm-K	Etanorm PumpUrive		Etabloc Pumpurive		BC PU		Etanorm GPV / CPV						SYT/R	-
	Riotherm	N mod o	- Inern	-Eco T	Calio Therm S	Calio S		Rio-Eco Z N		Etaline	Etaline Z	line Pu	line Z I	Etaline-R	/ ILNE	C / ILN		norm /	norm	Etabloc Fishion P.	Etabloc Pump Etabloc Pump	chrom		chrom			ŗ	т	~		hlor S	Dice of
Applications			_	_	_	Ca T	Calio	Bi G	0	Eta	Eta	Eta	Eta	Eta	ILN	ILN	i T	Eta	Eta						Eta	_	_	ΗΡ	НРК	_	Eta	2
Air-conditioning systems Aquaculture	speed	spee	choic			speed			drive		-		-	-		-	speed								1	sdund				sdund		
Boiler circulation	Circulator / hot water service pumps, fixed	xeq				able		H	variable speed	_		_					/ variable spe									ter		-		lioil		-
Boiler feed applications Chemical industry	ups, '	, sdu	, ar	-	-	, var			able			-			-		/ var			-	-	-	-	-		Hot wa	-	-	2	Hot water / thermal oil		
Cleaning of stormwater tanks / storage sewers	und	und .		<u> </u>		sdund			vari								ixed									T				r / th		
Condensate transport	rvice	lator							fixed /								ps, f	1										_		vate		
Cooling circuits Descaling units		circul	I ator		-	ulator				_	_	-	-	-	-		und					+	-	-		-	-	-	-	Hot v	-	÷
Descaling units Dewatering	wate	ater (5-	-	Circul	-	-	pumps wit			-		_			pled	d,										-	-	-		
Disposal	hot	g w	laten						dund							_	-cou															
District heating	tor /	Drinking water circulator							ine								close-					_		_								
Dock facilities	cula	Dri	rinki			-		-	il-	\vdash		_					o / pa			_	-	_		-	_	-	-		-		_	-
Domestic water supply Drainage	- Ū			· –	-	-		-		\vdash	_			_		_	rdise	-		-		-		-	-	-	-		-			-
Drainage of pits, shafts, etc.					-			-									Standardised /								-		H		-			1
Dredging																	St															
Fire-fighting systems			_					_																								
Flood control / coast protection (stormwater)			-		_	-	-	-	-	_		_			_		-	-				-		-	-	-	-	_	-		-	-
Flue gas desulphurization Food and beverages industry	-	-	-		-	-	-	-	-		-		-		-											-	-	-	-			-
Fountains	-				-		-			-	-		-	-	Ē	Ħ									-	-		-	-		-	
Heat recovery systems																																
Heavy oil and coal upgrading	_		_	_	_	-			-	_		_					-	_	_	_		_		_		_	_		_			_
Homogenization	-				_				-	-	_	-	_	_	_	_									-	-					-	-
Hot water heating systems Hydraulic solids transport	-				-						-		-		-	-									-		E	-				
Industrial recirculation systems																				ī į					1							
Irrigation																																
Keeping in suspension	_	-	-	-	_	-		-	-	_		_			_		-	-							-	-	-	_	-		-	-
Lowering ground water levels Maintaining ground water levels	-	-	-	-	-	-		-	-			-		_			-	-	-	-	-	-	-	-	-	-	-	-	-		-	
Mining						-		-								-	-								-						-	E
Mixing																																
Nuclear power plants	_	_	_	_	_	_			-	_		_			_	_	_		_		_		_			-	_	-				1
Offshore platforms	-		-		-	-	-	-	-	-		-				-	-	+			-	-		-		-	-	-	-		-	÷
Paint shops Paper and cellulose industry			-		-	-	-	-								-	-									-	⊢		-			
Petrochemical industry								_																								
Pharmaceutical industry																																
Pipelines and tank farms	_		_		_			-		\vdash		-					-	_		_		-		-	_	-	-		-			-
Pressure boosting Process engineering			-		-	-		-			_	-	_			_	-	-		-	-	-		-	-	-						-
Rainwater harvesting					-											_											F					
Recirculation																																
Refineries																																
Seawater desalination / reverse osmosis Sewage treatment plants	_	-	-		_	-	-	-		\vdash	_	-			-	_				÷							-		-			1
Sewage treatment plants Shipbuilding	-				-		-	_				-			t												H		-			-
Sludge disposal																																
Sludge processing																																
Snow guns	_		_			-		_				_						_	-	_	_	_	-	_	_	-	-		-		_	-
Solar thermal energy Spray irrigation	-	-	-	-						\vdash		-														-	H		-			-
Sugar industry					-											-									i-		F		-			-
Swimming pools																									1							
Thermal oil circulation			_			_		-																								
Thickening Waching plants	-	-	-		_	-	-			\vdash		-				_	-	-	-	-	-	-	-	-	_	-	-		-		-	-
Washing plants Water extraction	-		-		-	-	-	_		\vdash	_			_	-					-		-		-	-	-	-	-	-			-
Water supply							-	_								Η												-	-			
Water treatment systems																																

														(B)	5							
~ ~	MegaCPK MegaCPK Pumpdrive		ų	-				~ ~						CTN API series (Nikkiso-KSB)	2					Hva-Rain / Hva-Rain N		
HX (Nikkiso-KSB) HY (Nikkiso-KSB)	dun	F	Magnochem-Bloc	Etaseco / Etaseco-l Etaseco RVP	X	Secochem Ex K HN (Nikkiso-KSB)	HT (Nikkiso-KSB)	HK (Nikkiso-KSB) VN (Nikkiso-KSB)	DN (Nikkiso-KSB)					Nikki		2		S		Hva-F	0	
kkiso kkiso	PK P	Magnochem	chen	Etaseco / Eta Etaseco RVP	Secochem Ex	Secochem Ex K HN (Nikkiso-KSI	kkiso.	kkiso kkisa	kkiso				þ	l) sei	2	10	LINCP / LINCN	RWCP / RWCN		in /	Hya-Rain Eco	
X (Ni	egaC egaC	Magno	agno	aseci	coch	scoch N (Ni	L (Nij	z (Ni	N.	į	RPH RPHb	RPH-V	RPHmdp	CTN API ser	CHTR	YNKR	VCP VCP	NCP	KTR	/a-Ra	/a-Ra	
			_		-	Ξ	Ŧ	Ξ5				R	R		5	Σū	5 Z	2		_	ΞŤ	Air-conditioning systems
motor	sdund	sdund								sdund		-										Aquaculture
		ess p								ocess p	-									ly sy		Boiler circulation
or can	chemical	Seal-less					-			Proc			-		-	-			_		-	Boiler feed applications Chemical industry
	~																				-	Cleaning of stormwater tanks / storage sewers
magnetic drive	Standardised																					Condensate transport
ignet	Stand						_		-	-	-	-	_	-	-	_					_	Cooling circuits
– m – – – – – – – – – – – – – – – – – –				-	-			-		-	-	-			-				- 1	-		Descaling units Dewatering
s wit														-								Disposal
pumps with																						District heating
		_		_	-				Н			-		_	-			-	-	H		Dock facilities Domestic water supply
Thermal																				F		Drainage
The																						Drainage of pits, shafts, etc.
-				_	-				Н			-		_	-			-	-	H		Dredging Fire-fighting systems
		-		-																F		Flood control / coast protection (stormwater)
																						Flue gas desulphurization
			1		-	_	_	-	-	-	-	-	_	-	-			-	-	-	_	Food and beverages industry
-				-	-			-		-	-	-		-	-			-	-	-		Fountains Heat recovery systems
																						Heavy oil and coal upgrading
												_										Homogenization
	_				-	-				-	_	-		_	-		_	-	-	-		Hot water heating systems Hydraulic solids transport
										-				-	-						_	Industrial recirculation systems
																				E		Irrigation
_				_	-			_		-	_	-		_	-		_	-	-	-		Keeping in suspension Lowering ground water levels
_					-	-	_	_		-	-	-	-	-	-					F		Maintaining ground water levels
																						Mining
		-		_			_		-			-	_	-	-	_	-	-	-	-	_	Mixing
												in.	÷	-				-		H		Nuclear power plants Offshore platforms
			1													_						Paint shops
_		_	_	_			_	_		-		_	_	_	_					_		Paper and cellulose industry
				_	- 1					-		-	÷					-		-		Petrochemical industry Pharmaceutical industry
													_		_							Pipelines and tank farms
			_									_										Pressure boosting
									Н			-			H		÷					Process engineering Rainwater harvesting
		_		_					Η			-						-	-			Recirculation
		_											_		_							Refineries
				_	-	-			Н			-		_	-			-	_	H	_	Seawater desalination / reverse osmosis
		_		_					Η			-					_	÷	-	⊢		Sewage treatment plants Shipbuilding
																						Sludge disposal
		_				_						-										Sludge processing
				_	-				Н		-	-		_	-			-	-	H		Snow guns Solar thermal energy
		_		_					Η			-							_			Spray irrigation
																						Sugar industry
		_		_								_							_	H		Swimming pools
-		_		_					Н			-						-	-	H	_	Thermal oil circulation Thickening
																			_			Washing plants
																						Water extraction
																						Water supply

	_					_									_						
																	11				
																358	Ama-Drainer 400/10 400/35 500/10/11				
																Ama-Drainer N 301, 302, 303, 358	5 50				
																02, 3	00/3				
																11, 30	104	3			
			_					:	×	۲ ۲				, IVP		N 30	Ama-Drainer 400/10	- 'no	c /		
		D-Pro	VME			≥		S	pact	ipact		2 ~		≚ :		iner	iner		L E	~	_
		Li Eco	itec'	:	z	Solo	Solo	Solo	Com	Lom	Hyd-ECU VF	nat/	nat/	natl		-Dra	-Dra	-DId		, W	
Applications		Multi Eco Multi Eco-Pro		<u>×</u>	Filtra N	Hya-	Hya-	Hya-Solo DV	Hya-Compact K	Hya-	Hyd-ECU VF	Hvar	Hvar	Hyamat IK, IV, IVP		Ama	Ame	AIIId	Doto	MK / MKY	
Air-conditioning systems	ols				1																
Aquaculture	g po		_	-		sillalsks		_		_	_	_	_	_	sdund	_	_	_	_		
Boiler circulation Boiler feed applications	min		-	-				-	-		-		-		waste water	-			-	-	
Chemical industry	swin					חסטנפו									ste v						
Cleaning of stormwater tanks / storage sewers	ly / :					alle															
Condensate transport	ddns		-	-				_	_	_	_	_	_	_	/ sdund	_	_	_			1
Cooling circuits Descaling units	ater			-	-		-				-	-	÷	-	bun	-	_	-	-	-	
Dewatering	Domestic water supply / swimming pools					F							T		Drainage						
Disposal	nesti														Drain						l l
District heating	Don			_		-							_		-						
Dock facilities Domestic water supply				-	_		-								-	\vdash		-	-		
Domestic water supply Drainage					-	F										H					
Drainage of pits, shafts, etc.																					
Dredging																					
Fire-fighting systems				-	_	-				_			-			\vdash		-			
Flood control / coast protection (stormwater) Flue gas desulphurization	-			-	_	H		_	-	-	-		_			-	_	-	-		
Food and beverages industry			-	-			-						r						ī.		
Fountains																					
Heat recovery systems																					
Heavy oil and coal upgrading	-		_	-	_	-		_		_	_	_	_	_	-	-			_	_	
Homogenization Hot water heating systems	-		-	-					_		-	-	-		-	-	_	-	-		
Hydraulic solids transport																					
Industrial recirculation systems	_			_	_			_							_	_					
Irrigation				-	-	-	-	_							-	_			_		
Keeping in suspension Lowering ground water levels	-	-	-	-			-		-			-		-	-	-					
Maintaining ground water levels	-					-							Г								
Mining						_							_								
Mixing		_	_	-	-	-		_			_		-	_	-	_		-	-	_	
Nuclear power plants Offshore platforms					-	H					-		-			\vdash					
Paint shops																					
Paper and cellulose industry																					
Petrochemical industry				-	_	H		_		-			-		-	\vdash		-			
Pharmaceutical industry Pipelines and tank farms						H										\vdash					
Pressure boosting																					
Process engineering																					
Rainwater harvesting				-	_	P	-						-		-	\vdash		-	-		
Recirculation Refineries				-	-	H										\vdash					
Seawater desalination / reverse osmosis																					
Sewage treatment plants				_				_					_								
Shipbuilding Sludge disposal				-	_	H		_		-	-		-			-		-	-		
Sludge processing				-	-	-					-		-			\vdash			-		
Snow guns						_															
Solar thermal energy																					
Spray irrigation					_	P							-		-	\vdash		-	-		
Sugar industry Swimming pools	-					-									-	\vdash					
Thermal oil circulation					-	-															
Thickening																					
Washing plants								- 1													
147		_		_	_											1 m 1					
Water extraction Water supply																Ξ			-		

i -Eu Station tation	lled installed		
AmaD53 Ama-Drainer-Box Ama-Drainer-Box Ama-Drainer-Box Mini mini-Compacta Compacta Compacta Compacta Compacta Ama-Porter CK Pump Station Amaren N CK Pump Station	Amarex N Amarex N 5 32 Amarex KRT dry-installed Amarex KRT wet/dry-installed Amacan K Amacan P	Amacan S Amamix Amaprop Amajet Amaline	Sewatec / Sewabloc KWP / KWP-Bloc
pump stations	tubes		Air-conditioning systems
du str	discharge		Boiler circulation
n	disch		Boiler feed applications Chemical industry
Lifting	ps in c		Cleaning of stormwater tanks / storage sewers
n n n n n n n n n n n n n n n n n n n	Ē	tors /	2 Condensate transport
ĕ			Cooling circuits
			Descaling units Dewatering
	5	Mixers	Disposal
			District heating
			Dock facilities
		-	Domestic water supply Drainage
			Drainage of pits, shafts, etc.
			Dredging
		-	Fire-fighting systems Flood control / coast protection (stormwater)
			 Flue gas desulphurization
			Food and beverages industry
			Fountains
		_	Heat recovery systems Heavy oil and coal upgrading
		_	Homogenization
			Hot water heating systems
			Hydraulic solids transport
			 Industrial recirculation systems Irrigation
			Keeping in suspension
			Lowering ground water levels
			Maintaining ground water levels
			Mining
			Mixing Nuclear power plants
			Offshore platforms
			Paint shops
			Paper and cellulose industry Petrochemical industry
			Petrocnemical industry Pharmaceutical industry
			Pipelines and tank farms
			Pressure boosting
			Process engineering Rainwater harvesting
			Recirculation
			Refineries
			Seawater desalination / reverse osmosis
			Sewage treatment plants
-			Shipbuilding Sludge disposal
			 Sludge processing
			Snow guns
		_	Solar thermal energy
			Spray irrigation Sugar industry
			Swimming pools
			Thermal oil circulation
			Thickening
			Washing plants
			Water extraction Water supply

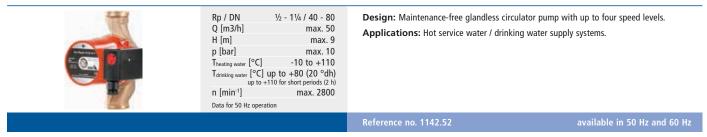
						1								_												
								RN																		
	~							Etaprime L / Etaprime B / BN MZ							÷H											
	WBC LSA-S / LCC-M / LCC-R TBC							lime		y	UPA 200, 200B, 250C				Movitec V / VS / VC / LHS	ive.		ive								
	W /							Etap		S 100D / UPA 100C UPA 150C	0B, 2	0 1	<u> </u>		/S //	Movitec PumpDrive		Multitec PumpDrive								
	-CC-		E	2				e L/	1	N D	0, 20	UPA 300, 350	UPZ, BSX-BSF BEV		Movitec V / V	Pun		Pun					ε		e d	υ
	C .		Mega нно / мно	2	×			un de	1	S 100D / U UPA 150C	A 200	A 300	SS /		vitec	vited	Multitec	ltited		ega	RDLO		Vitachrom	Vitacast	Vitaprime	Vitalobe
Applications	WBC LSA-S	LCV FGD	Меда	LHD	XDM ZWZ	ΗΥF		MZ		UP/	UP/	UP/	BEV		Mo	Mo	Mu	Μ		Сu	RDI	2	Vita	Vita	VIL	Vita
Air-conditioning systems	sdund						nps		Submersible borehole pumps					eed		1			sdund	•		Sumin	3			
Aquaculture	nd	_	_	_	-	-	nd-	_	bur	_	-		_	/ variable speed	-	-	_	_	: bur	-	_		<u> </u>			-
Boiler circulation Boiler feed applications	Slurry I				-		ning-		hole	_	-		_	riabl			-	H	split	-		Hvaienic r				
Chemical industry	S		-	_	-		Self-priming pumps		bore	-	-			/ vai	-	Ē	Ē	Ξ	\geq			- H	<u> </u>			-
Cleaning of stormwater tanks / storage sewers							Seli		ible					xed					¥							
Condensate transport	_					_	_		ners		_			ps, fi				_			_	_	_		_	_
Cooling circuits						-	-	-	Subr		-	_	-	m	-	-	-	-	-	-	-	-	-		-	-
Descaling units Dewatering							-							ure				_				-	-			-
Disposal														ress		E		-		-	_					
District heating														High-pressure pumps, fixed							_					
Dock facilities					_									Ξ	_	-				-		-				_
Domestic water supply Drainage						-	-				-				-	-		_		-		-				-
Drainage of pits, shafts, etc.						H	-				-							_		-		-	-			-
Dredging		1					-											_								
Fire-fighting systems									I																	
Flood control / coast protection (stormwater)		_				-	-		-		-							_		_	_	-	_			-
Flue gas desulphurization Food and beverages industry		-	_		-	-					-		-	-				_	-	-	-	-	-	-		-
Fountains				_	-		-				н			-	-		_	-		-		-	-		-	-
Heat recovery systems									-			-		-												
Heavy oil and coal upgrading																										
Homogenization	_				_	_	-		-	_	_		_		_	_	_	_	-	_		-	_			_
Hot water heating systems Hydraulic solids transport						-	-	_	-	-	-	-	-	-	-	-		-		-	_	-	-		-	-
Industrial recirculation systems							-				-			-					-	-		-			-	
Irrigation									I																	
Keeping in suspension		_				-	-				_							_		_		-	_		_	-
Lowering ground water levels Maintaining ground water levels		_	_			-	-	_	-		Н			-	-			_	-	-	_	-	-		-	-
Mining									ī		Ħ				-			-		-	-	-	-	-		-
Mixing																										
Nuclear power plants					_	_	-		_	_	_		_		_	_		_		_		_	_			_
Offshore platforms	_	-	-	_	-	-	-	-			-		-	-	-			_	-	-	_	-	-		_	-
Paint shops Paper and cellulose industry							-	-	ľ		-							_		-		-	-			-
Petrochemical industry																										
Pharmaceutical industry																										
Pipelines and tank farms					_	$\left \right $	-	_			-				_	-		_		_		-			_	_
Pressure boosting Process engineering					-	Н	-		ŀ						-	_				-	-	-	-			-
Rainwater harvesting			-				-					-						-	-	-					-	
Recirculation																										
Refineries																										
Seawater desalination / reverse osmosis Sewage treatment plants		-	-	_	-	-			-	-	-		-	-		-		-	-	-	_	-	-		_	-
Sewage treatment plans					-	-	-	-	-	-	-	-		-	-	-			-			-	-		-	-
Sludge disposal									-									_		_						
Sludge processing																										
Snow guns					_						-					-				-		-				-
Solar thermal energySpray irrigation					-	H	-													-	_	-				
Sugar industry						_			-		_	-			_			-								
Swimming pools																										
Thermal oil circulation					_						_					-				_		-				_
Thickening Washing plants						\square	-				-									+	_	-	-		-	-
Washing plans Water extraction								-							_		Ē	_								
Water supply															-											
Water treatment systems																										

Image:		CHTA / CHTC / CHTD	HGB / HGC / HGD	V		/ LUVA	8	SEZ / SEZT / PHZ / PNZ	SNW / PNW	eron									IIIV niclear							-RO	HGM-RO	Multitec-R0	SALINO Pressure Center		BCV						L	reme		PumpMeter	
Sector Sector Sector Sector Sector Aquaculare Sector		CHT,	HGB	MGH	YNK	LUV	MKJ	SEZ ,	SNM	Beve				RER	RSR	RUV	PSR	RHD	NII	DUN			RHR	RVR		RPH-RO	HGN	Mult	SALL		BC /						1	Idnc		Pum	
Image:	nds											-	nts												osis					suu			_	<u> </u>			ŝ				Air-conditioning systems
Image:		_		-		-				-	_		r pla	_				-	_	_	_	_	-		osmo	_		-			2			a)sle	_				- a)sle		Aquaculture
Image:					-				-	t	-	_		-					-	t	+	-	+	_	erse (-	-	÷	-	ment	-	+		 	+	- 4	- 9				Boiler circulation Boiler feed applications
Image:	vent		_																					_	/ reve					lace			fich	llfull-					ayııc		Chemical industry
Image:				_									nucl												(d nc					disr			2	Ξ				• F			Cleaning of stormwater tanks / storage sewers
B Dock facilities C File gas desuphurization C Foundains Foundains Foundains se	atior	-	-	-		-		_	_		_	- 4		_				-	-	h				_	inatio	-	_	-	-	sitive	_	-	-	-	-	_	-		llg all		
Dock facilities Dock facilities	er st			-	-	+		-	-				dun	-				-	-	Ē			-	-	esali	-	-	-	-	- ŏ	<u>-</u>	-	-		-	-	_	tor:			
Dock facilities Dock facilities	Mod												ר ב												for d																• • • • • • • • • • • • • • • • • • •
B Ock faillies C Doinage C Fire-fighting systems C Food contol / Cost protection (tormwater) Fire-fighting systems Food and beverages industry C Food and beverage industry	s for					_				_				_									_		sdu													_		_	
Omestic water supply Onestic water su		-		-		+		P				-	ŀ	_	_			-		ŀ			+	_	Pu	_		-		-	ŀ		-	ŀ	-	-	ŀ		H		
Image of the short set of						+							ŀ	-						t		+	+			-					H			ŀ			h				
Deciging File-lighting systems File-lighting systems File-gist ling systems File gist ling system File gist ling system File gi																															E										Drainage
Image: Second	-	_		_		-						-	-	_				-	_	-		_	-			_		-		_	H		-	-		-	4		-		
Image: Construction (Stormwater) Image: Construction (Storms) Image: Construction (Storms) <td>-</td> <td>-</td> <td></td> <td>-</td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>_</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>_</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td>	-	-		-	_	-				-	-	-	-	_				-	_	-	-	_	-	_		-		-	_	-	-	-	-				-	-	-		
Flue gas desulphurization Food and beverages industry Heav oil and coal upgrading Hornogenization		-		-		-							-	-				-	-	t		-		_		-	_	-	-	-	H			Ē		-					
Fountains																																					_	_			
Image: Section of the section of th																																					_	_			
Image: Section of the section of th	-	-		_		-				-		-	-	_				-	_	-	-	_	-	_		_		-	_	-	H		-	-		-	_	_		_	
Image: Section	-	-	_	-	-	-			-	-	-	-		-				-	-	-	-	-	-	_		-	-	-	-	-	h		-		-	-	E		ł	-	
Hot water heating systems		-			_					-				-				-						_		-		-		-	E			-							
Image: Second																								_													_	_			
Image: Solution Image: Solution Image: Solution Image: Solution Image: Solution Image: Solution <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																																									
Keeping in suspension Keeping in suspension Lowering ground water levels Mining Mixing	-	-		-		-		_	_			-	-	_				-		_		_	-	_		_		-		-	H		-	-		-		_			
Image: Second	-	-	_	-	_	-		-	-				-	_				-	_	-	-	-	-	_		-	-	-	_	-	H	-	-	-	-	-	_	_	ł	-	
Image: Second		-							-	r				-				-	-					_		-	-	r			E						_	_			· · · ·
Image: Second Secon																																									
Image: Second	-	_		_		_						_	-	_				_					_					-		_	-		_	_		_	-		-		
Image: Service of the ser	-	-	-	-	_	-	_	-	_					_	_	_	_						÷	_		_		÷	-	-	H	-	-	-	-	-	H		ŀ		-
Image: Series of the series of th	-	-	-	-	-		-	-	-				-		-	-								-		-		÷	-	-	h		-	-		-			ŀ		Offshore platforms
Image: Constraint of the constraint o									-	-				_				-		T		T		_				-			E	-					ľ		ľ		
Image: Series of the series of th																															E										Paper and cellulose industry
Image: Sewage treatment plants	_	_		_		_						_	-	_	_			_	_	_	_	_	_			<u> </u>	_	_			_		_	_	_	_					
Image: state in the	-	-		-		+				H		-		_	_			-		ŀ		-	+			-		-			ŀ		-	ŀ		-	ŀ		ŀ		
Image: Second				-		+				-			ŀ	-	_			-		-		-	+	_		-		-			F		-	ŀ		-					1
Image: Second state sta								_		L										Ľ											Ľ			ľ			_	_	ľ	_	5
Image: series																															E						_	_			
Image: Second	_	_		_		_				-		_			_			-		-			_					-		-	L		-	ŀ	_	-	1				
Image: Sewage treatment plants	-	H		+		+						-	ŀ	-	_					ł		-	+								H		-	ŀ		-	ŀ	-	ŀ		
Image: State of the state						+		-					ŀ	-	_					1			+	_							H		-	ŀ			h		ŀ		
Image: State of the state o																																		Ľ			Ľ				Shipbuilding
Image: Strategy of the strategy	_			_						_					_			_										_			Ĺ		_	L		_	L		L		
	_	-				-	_			-	-	-	ŀ	_	_			-		-	-	-	-	_		<u> </u>	-	-			-	-	-	-	-	-	ŀ				
Solar mermai enerov			-	-		ť				-		-	ŀ	-	_		-			+		+	-	_		-	-						-			-	F		ŀ		Solar thermal energy
Som definition of the second s						İ							ľ							Ē		Ť															Ī				
Sugar industry																															E							_	L		
Swimming pools	_	-		_		4				-		-		_	_			-		-	-	-	4			_		-		-	L	_	_	-	_	-		_			
Thermal oil circulation		H		+		+				h		-	ŀ	-	_			-		ł		-	+	_		-		-			H		-	ŀ		-	_	_	ŀ		
With the second seco						+				h				-	_					t		t	+	_		-		-			F		-	ŀ			_	_			
Image: Second																				Ľ											Ľ						_	_			Water extraction
Water supply				_											_					E				_							E			F			_	_		_	
■ Water treatment systems				_		_								_									_																		Water treatment systems

Circulator / hot water service pumps, fixed speed

Riotherm[®] Hot water service pump

Rp	1-11/4
Q [m ³ /h]	max. 10
H [m]	max. 6
p [bar]	max. 10
T [°C]	-2 to +110
Data for 50 Hz operation	

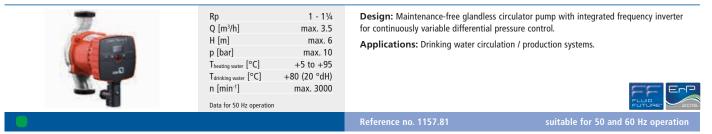

Switchgears

Design: Screw-ended glanded pump with mechanical seal and fixed speed. **Applications:** Swimming pools, cooling circuits and industrial plants.

also available in 60 Hz

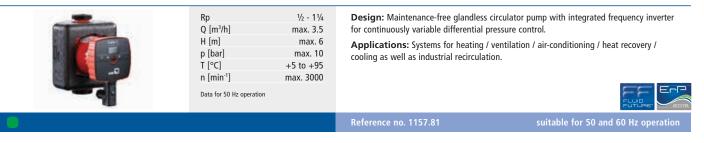
Drinking water circulator pumps, fixed speed

Rio®-Therm N Glandless circulator pump with up to 4 speed levels


Drinking water circulator pumps, variable speed

Rio-Eco® Therm N High-efficiency glandless circulator pump with continuously variable differential pressure control

Rp / DN Q [m ³ /h] H [m] p [bar] Theating water [°C] Tdrinking water [°C] n [min ⁻¹] Data for 50 Hz operation	1-1¼ / 32 - 80 max. 38 max. 12 max. 10 -10 to +110 +80 (20 °dH) max. 3700	Design: Maintenance-free glandless circu for continuously variable differential press Applications: Hot service water / drinki	
		Reference no. 1142.51	suitable for 50 and 60 Hz operation


Drinking water circulator pumps, variable speed

Calio Therm S High-efficiency glandless circulator pump with continuously variable differential pressure control

Circulator pumps, variable speed

Calio S High-efficiency glandless circulator pump with continuously variable differential pressure control

Calio High-efficiency glandless circulator pump with continuously variable differential pressure control

Rp / DN Q (m ³ /h) H (m) p (bar) T [°C] n [min ⁻¹] Data for 50 Hz op	1 - 1¼ / 32 - 100 max. 70 max. 18 max. 16 -10 to +110 max. 3660	for continuously variable differential p	ventilation / air-conditioning / heat recovery /
		Reference no. 1157.82	suitable for 50 and 60 Hz operation

Rio-Eco[®] Z N High-efficiency glandless twin circulator pump with continuously variable differential pressure control

DN Q [m³/h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operati	32 - 80 max. 46 max. 14 max. 10 -10 to +110 max. 3550	for continuously variable differential pressu	ator pump with integrated frequency inverter re control. tion/air-conditioning/heat recovery/cooling as
		Reference no. 1140.51	suitable for 50 and 60 Hz operation

Factory-automated

In-line pumps with fixed / variable speed drive

Etaline[®] In-line pump

	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz oper	32 - 200 max. 700 max. 95 max. 16 -30 to +140	Design: Close-coupled, in-line circulator pump motor. Applications: Hot water heating systems, cou service water supply systems, industrial recircul	oling circuits, air-conditioning, water and
PumpMeter, Hyamaster, LevelControl, Swi	tchgears		Reference no. 1159.5	also available in 60 Hz

Etaline® Z In-line twin pump

	DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz opera	32 - 200 max. 1120 max. 38 max. 16 -30 to +140	Design: Close-coupled, in-line twin circulator purigidly coupled. Applications: Hot water heating systems, cooli water and service water supply systems, industria	ing circuits, air-conditioning systems,
PumpMeter, Hyamaster, LevelControl, Switchgears		Reference no. 1148.5	also available in 60 Hz	

Etaline® PumpDrive In-line pump with motor-mounted variable speed system

	DN Q [m³/h] H [m] p [bar] T [°C] n [min¹]	32 - 200 max. 788 max. 100 max. 16 -10 to +140 max. 4200	system; pump shaft and motor shaft are	ems, cooling circuits, air-conditioning systems,
🔋 🛑 PumpMeter, BOA-Systronic			Reference no. 1149.52	also suitable for 60 Hz operation

Etaline® Z PumpDrive In-line pump with motor-mounted variable speed system

	DN Q [m³/h] H [m] p [bar] T [°C] n [min ^{.1}]	32 - 200 max. 990 max. 38 max. 16 -10 to +140 max. 2100	Design: Close-coupled in-line circulator pump, in variable speed system; pump shaft and motor shaft modules (accessories) enable redundant operation level controller. Applications: Hot water heating systems, cooling air-conditioning systems, water and service water s industrial recirculation systems.	t are rigidly coupled. Dual pump of Etaline Z without a higher- g circuits,
😸 🛑 PumpMeter, BOA-Systronic			Reference no. 1154.51	also suitable for 60 Hz operation

Etaline®-R In-line pump

	DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation	150 - 350 max. 1900 max. 93 max. 25 -30 to +140	Design: Vertical close-coupled, in-line circulator pump wit standardised motor. Applications: Hot water heating systems, cooling circuits service water supply systems, industrial recirculation system	s, air-conditioning, water and
PumpMeter, PumpDrive, Hyamaster, Switchgears			Reference no. 1146.51	also available in 60 Hz

Factory-automated Automation possible

27

In-line pumps with fixed / variable speed drive

ILN / ILNE / ILNS In-line pump

	DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation	65 - 400 max. 3100 max. 112 max. 16 -20 to +70 max. 3000	 Design: Vertical in-line centrifugal pump with closed impeller and mechanical seal. ILNS fitted with an auxiliary vacuum pump and ILNE with ejector. Process design allows removal of the impeller without removing the pipes and the motor. Applications: Hot water heating systems, cooling circuits, air-conditioning, marine applications, water and service water supply systems, cleaning systems, industrial recirculation systems.
PumpMeter, PumpDrive, Hyamaster, Switchgear			also suitable for 60 Hz operation

ILNC / ILNCE / ILNCS In-line pump

	DN Q [m³/h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operat	32 - 125 max. 370 max. 112 max. 16 -20 to +70 max. 3000	 Design: Closed-coupled vertical in-line centrifugal pump with electric motor, closed impeller and mechanical seal. ILNCS fitted with an auxiliary vacuum pump and ILNCE with ejector. Standardised IEC motor. Applications: Hot water heating systems, cooling circuits, air-conditioning, marine applications, water and service water supply systems, cleaning systems, industrial recirculation systems.
PumpMeter, PumpDrive, Hyamaste	er, Switchgear		also suitable for 60 Hz operation

Standardised/close-coupled pumps, fixed/var. speed

Etanorm[®] / Etanorm[®]-R Standardised pump

28

	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	32 - 300 max. 1900 max. 102 max. 16 max. +140	 Design: Horizontal, long-coupled, single-stage volute casing pump (pump size 125 - 500 with two stages) with ratings and main dimensions to EN 733, in back pull-out design, with replaceable shaft sleeves / shaft protecting sleeves and casing wear rings. ATEX-compliant version available. Applications: Spray irrigation, irrigation, drainage, district heating, water supply systems, heating and air-conditioning systems, condensate transport, swimming pools, fire-fighting systems, handling of hot water, cooling water, fire-fighting water, oil, brine, drinking water, brackish water, service water, etc.
🛑 PumpMeter, Hyamaster			Reference no. 1311.5 (Etanorm) + 1211.5 also available in 60 Hz

Etanorm® PumpDrive Standardised pump with motor-mounted variable speed system

	DN Q [m³/h] H [m] p [bar] T [°C] n [min ⁻¹]	25 - 150 max. 660 max. 160 max. 16 max. +140 max. 4200	 Design: Horizontal, long-coupled, single-stage volute casing pump in back pull-out design, with replaceable shaft sleeves / shaft protecting sleeves and casing wear rings and motor-mounted variable speed system. Applications: Spray irrigation, irrigation, drainage, district heating, water supply systems, heating and air-conditioning systems, condensate transport, swimming pools, fire-fighting systems, handling of hot water, cooling water, fire-fighting water, oil, brine, drinking water, brackish water, service water, etc.
PumpMeter			Reference no. 1311.5 (Etanorm) + 4070.5

Etabloc[®] Close-coupled pump

	DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation	25 - 150 max. 612 max. 102 max. 16 max. +140	Design: Close-coupled, single-stage volute casing pump, ratii replaceable shaft sleeve and casing wear rings. ATEX-compliar Applications: Spray irrigation, irrigation, drainage and wate and air-conditioning systems, condensate transport, swimming water, cooling water, fire-fighting water, seawater, oil, brine, dr agents, brackish water, service water, etc.	nt version available. r supply systems, heating pools, handling of hot
PumpMeter, Hyamaster			Reference no. 1167.5	also available in 60 Hz

Etabloc® PumpDrive Close-coupled pump with motor-mounted variable speed system

	DN Q [m³/h] H [m] p [bar] T [°C] n [min ⁻¹]	25 - 150 max. 660 max. 101 max. 16 max. +110 max. 4200	 Design: Close-coupled, single-stage volute casing pump, ratings to EN 733, with replaceable shaft sleeve and casing wear rings and motor-mounted variable speed system. Applications: Spray irrigation, irrigation, drainage and water supply systems, heating and air-conditioning systems, condensate transport, swimming pools, handling of hot water, cooling water, fire-fighting water, seawater, oil, brine, drinking water, cleaning agents, brackish water, service water, etc.
🕐 🛑 PumpMeter			Reference no. 1167.5 + 4070.5

Etachrom[®] BC Close-coupled chrome steel pump

	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	25 - 80 max. 260 max. 106 max. 12 max. +110	 Design: Close-coupled, horizontal, single-stage annular casing main dimensions to EN 733, with replaceable casing wear ring available. Applications: Spray irrigation, irrigation, drainage and water and air-conditioning systems, fire-fighting systems, condensate pools, handling of hot water, cooling water, fire-fighting water, drinking water, cleaning agents, service water. 	s. ATEX-compliant version supply systems, heating transport, swimming
PumnMeter Hyamaster			Reference no. 1213 5	also available in 60 Hz

Standardised/close-coupled pumps, fixed/var. speed

Etachrom[®] BC PumpDrive Close-coupled chrome steel pump with motor-mounted variable speed system

	DN Q [m³/h] H [m] p [bar] T [°C] n [min ⁻¹]	25 - 80 max. 260 max. 106 max. 12 max. +110 max. 3600	 Design: Close-coupled, horizontal, single-stage annular casing pump, with ratings and main dimensions to EN 733, with replaceable casing wear rings and motor-mounted variable speed system. Applications: Spray irrigation, irrigation, drainage and water supply systems, heating and air-conditioning systems, fire-fighting systems, condensate transport, swimming pools, handling of hot water, cooling water, fire-fighting water, oil, drinking water, cleaning agents, service water.
🕐 🛑 PumpMeter			Reference no. 1213.5 + 4070.5

Etachrom[®] NC Standardised chrome steel pump

	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operatio	25 - 80 max. 260 max. 106 max. 12 max. +110	Design: Horizontal, single-stage annular casing p to EN 733, with replaceable casing wear rings. ATE Applications: Water supply, spray irrigation, irrig and air-conditioning systems, fire-fighting systems, water, hot water, cooling water, swimming pool wa and cleaning agents.	X-compliant version available. Jation and drainage systems, heating handling of drinking water, service
PumpMeter, Hyamaster			Reference no. 1212.5	also available in 60 Hz

Etachrom® NC PumpDrive Standardised chrome steel pump with motor-mounted variable speed system

Ser Ste	DN Q [m³/h] H [m] p [bar] T [°C] n [min ⁻¹]	25 - 80 max. 260 max. 106 max. 12 max. +110 max. 3600	Design: Horizontal, single-stage annular casing pump, with ratings and main dimensions to EN 733, with replaceable casing wear rings and motor-mounted variable speed system. Applications: Water supply, spray irrigation, irrigation and drainage systems, heating and air-conditioning systems, fire-fighting systems, handling of drinking water, service water, hot water, cooling water, swimming pool water, fire-fighting water, condensate, oil and cleaning agents.
🕐 🛑 PumpMeter			Reference no. 1212.5 + 4070.5

Etanorm® GPV / CPV Vertical low-pressure pump

t	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	32 - 150 max. 660 max. 102 max. 16 max. +95	Design: Single-stage volute casing pump, ratings to E closed tanks under atmospheric pressure. Up to an imr Applications: Handling of neutral degreasing and p with degreasing agents, dipping paints, etc.	mersion depth of 2000 mm.
			Reference no. 1214.5	also available in 60 Hz

Hot water pumps

HPK-L[®] Heat transfer liquid / hot water recirculation pump without external cooling

Data for 50 Hz operation

		 Design: Horizontal, radially split volute casing pump in back pull-out design to ISO 2858 / ISO 5199, single-stage, single-entry, with radial impeller. Equipped with heat barrier, seal chamber air-cooled by integrated fan impeller, no external cooling. ATEX-compliant version available. Applications: Handling of hot water and thermal oil in piping or tank systems, particularly in medium-sized and large hot water heating systems, forced circulation boilers, district heating systems, etc. 	
		Reference no. 1136.5	also available in 60 Hz
: water recircula	tion pump		
DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation	150 - 400 max. 4150 max. 185 max. 40 max. +400	Design: Horizontal, radially split volute casing p ISO 2858 / ISO 5199, single-stage, single-entry, v TÜV certification to TRD on option. ATEX-complia Applications: Handling of hot water and thern particularly in medium-sized and large hot water boilers, district heating systems, etc.	with radial impeller. ant version available. mal oil in piping or tank systems,
		Reference no. 1121.51	also available in 60 Hz
bump			
DN Q [m³/h] H [m] p [bar]	40 - 350 max. 2350 max. 225 max. 110	Design: Horizontal, radially split volute casing p single-stage, single-entry, with centreline pump f to TRD on option. ATEX-compliant version availal Applications: Handling of hot water in high-p	feet and radial impeller. TÜV certification ble.
	DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation Data for 50 Hz operation	Q [m ³ /h] max. 4150 H [m] max. 185 p [bar] max. 185 T [°C] max. 400 Data for 50 Hz operation Data for 50 Hz operation Data for 50 Hz operation DN 40 - 350 Q [m ³ /h] max. 2350 H [m] max. 225 p [bar] max. 110	DN 150 - 400 Q [m³/h] max. 4150 H [m] max. 4150 J [SO 2858 / ISO 5199, single-stage, single-entry, v TÜV certification to TRD on option. ATEX-complia Applications: Handling of hot water and therr particularly in medium-sized and large hot water boilers, district heating systems, etc. Data for 50 Hz operation DN 40 - 350 Q [m³/h] max. 2350 H [m] max. 110

Hyamaster

Reference no. 1122.5

also available in 60 Hz

Hot water / thermal oil pumps

Etanorm[®] SYT / RSY Hot water / thermal oil pump

1	DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation	32 - 300 max. 1900 max. 102 max. 16 max. +350	ATEX-compliant version available.	casing pump in back pull-out design with ngle-stage, with replaceable casing wear rings. N 4754, VDI 3033) or hot water recirculation
🛑 Hyamaster			Reference no. 1220.5	also available in 60 Hz
Etabloc [®] SYT / Etaline [®] S	/T Hot water	r / thermal o	il pump	

	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	32 - 100 max. 280 max. 67 max. 16 max. +350	Design: Horizontal, single-stage volute casing pump in ba and main dimensions to EN 733, or in in-line design, with Applications: Heat transfer systems (DIN 4754) or hot v	replaceable casing wear rings.
Hyamaster			Reference no. 1172.5	also available in 60 Hz

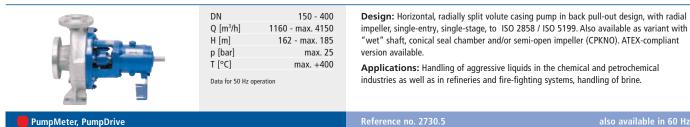
Thermal oil pumps with mag-drive or canned motor

HX (Nikkiso-KSB)* Thermal oil pump with explosion protection

DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation	32 - 100 max. 200 max. 100 max. 40 max. +350	Design: Horizontal, seal-less, single-stage pump with fully enclosed canned motor, uncooled. ATEX-compliant version available. Applications: Handling of thermal oils and other hot fluids in heat transfer systems to DIN 4754.
		also available in 60 Hz

HY (Nikkiso-KSB)* Thermal oil pump with explosion protection

DN	32 - 80
Q [m ³ /h]	max. 150
H [m]	max. 100
p [bar]	max. 40
T [°C]	max. +250
Data for 50 Hz operation	


Design: Horizontal, seal-less, single-stage pump with fully enclosed canned motor, uncooled, coolable or heatable. ATEX-compliant version available. Applications: Handling of thermal oils and other hot fluids in heat transfer systems to DIN 4754.

Standardised chemical pumps

MegaCPK Standardised chemical pump with two bearing bracket variants

	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	25 - 250 max. 1160 max. 162 max. 25 max. +400	Design: Horizontal, radially split volute casing pump in ba impeller, single-entry, single-stage, to ISO 2858 / ISO 5199 "wet" shaft and conical seal chamber. ATEX-compliant vers Applications: Handling of aggressive liquids in the chem industries as well as in refineries.	. Also available as variant with sion available.
PumpMeter, PumpDrive			Reference no. 2731.5	also available in 60 Hz
MegaCPK PumpDrive / Pu	umpMeter	Standardise	d chemical pump with two bearing brac	ket variants
	DN Q [m³/h] H [m]	25 - 250 max. 1150 max. 162	Design: Horizontal, radially split volute casing pump in ba impeller, single-entry, single-stage, to ISO 2858 / ISO 5199. "wet" shaft and conical seal chamber. ATEX-compliant vers	Also available as variant with
	p [bar] T [°C]	max. 25 max. +140	Applications: Handling of aggressive liquids in the chem industries as well as in refineries.	ical and petrochemical
And and a second	n [min-1] Data for 50 Hz operation	max. 3600		

CPKN Standardised chemical pump with reinforced bearing bracket

Seal-less pumps

Magnochem[®] Standardised chemical pump with mag-drive

	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operatio	25 - 160 max. 1160 max. 162 max. 40 -90 to +300	Design: Horizontal, seal-less, mag-drive volute to ISO 2858 / ISO 5199, single-stage, single-entr version available. Applications: Handling of aggressive, toxic, e: or harmful liquids in the chemical, petrochemica	y, with radial impeller. ATEX-compliant xplosive, valuable, flammable, malodorous
Hyamaster			Reference no. 2739.5	also available in 60 Hz

Seal-less pumps

Magnochem[®]-Bloc Close-coupled chemical pump with mag-drive

	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operat	25 - 160 max. 754 max. 162 max. 25 max. +250	Design: Horizontal, seal-less, close-coupled, ISO 2858 / ISO 5199, single-stage, single-ent version available. Applications: Handling of aggressive, toxi or harmful liquids in the chemical, petrochen	ry, with radial impeller. ATEX-compliant c, explosive, valuable, flammable, malodorous
e Hyamaster			Reference no. 2749.5	also available in 60 Hz
Etaseco [®] / Etaseco [®] -I Star	ndardised wa	ter pumps wit	h canned motor	

	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	32 - 100 max. 250 max. 162 max. 16 max. +140	Design: Horizontal / vertical, seal-less volute casing pum with fully enclosed canned motor, low noise emission, with single-entry, pump casing connecting dimensions to EN 73 Applications: Handling of aggressive, flammable, toxic, the chemical and petrochemical industry, in environmenta industry.	h radial impeller, single-stage, 33. volatile, or valuable liquids in
PumpMeter, Hyamaster, PumpDrive			Reference no. 2935.5	also available in 60 Hz

Etaseco[®] RVP Cooling circuit pump with canned motor

0.	DN Q [m³/h] H [m] p [bar] T [°C]	32 max. 20 max. 25 max. 10 max. +85	Design: Horizontal / vertical seal-less volute casing p with fully enclosed canned motor, low noise emission, single-entry. Applications: Pump for handling toxic, volatile or va and industrial engineering and for use as a coolant pu vehicles, environmental and industrial engineering; ap emission, smooth running or long service intervals are	with radial impeller, single-stage, aluable fluids in environmental imp in cooling systems. Transport plications where low noise
PumpMeter, PumpDrive			Reference no. 2935.17	also available in 60 Hz

Secochem[®] Ex Standardised chemical pump with canned motor and explosion protection

	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	25 - 100 max. 300 max. 150 max. 25 max. +130	Design: Horizontal, seal-less volute casing pump enclosed canned motor, low noise emission, with entry, casing connecting dimensions to ISO 2858. Applications: Handling of aggressive, flammab liquids in the chemical and petrochemical industry general industry.	radial impeller, single-stage, single- Design to ATEX. Ie, explosive, toxic, volatile or valuable
Hyamaster			Reference no. 2939.5	also available in 60 Hz

Secochem[®] Ex K Standardised chemical pump with canned motor and explosion protection

	DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation	25 - 100 max. 300 max. 150 max. 25 max. +400	Design: Horizontal, seal-less volute casing pump in back p enclosed canned motor, low noise emission, with radial imp entry, pump casing connecting dimensions to ISO 2858, wi ATEX. Applications: Handling of aggressive, flammable, explosi liquids in the chemical and petrochemical industry, in envir general industry.	eller, single-stage, single- th external cooler. Design to ve, toxic, volatile or valuable
Hyamaster			Reference no. 2939.51	also available in 60 Hz

Seal-less pumps

HN (Nikkiso-KSB)* Chemical canned motor pump with explosion protection

DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	32 - 300 max. 800 max. 200 max. 40 max. +180	Design: Horizontal (HN) or vertical (BN / TN), seal-less, single-stage pump with fully enclosed canned motor, uncooled, coolable or heatable. ATEX-compliant version available. Applications: Handling of aggressive, flammable, explosive, toxic, volatile or valuable liquids in the chemical and petrochemical industry.
		also available in 60 Hz

HT (Nikkiso-KSB)* Chemical canned motor pump with explosion protection for special applications

- 300

DN	32 - 300
Q [m ³ /h]	max. 800
H [m]	max. 200
p [bar]	max. 40
T [°C]	max. +400
Data for 50 Hz operation	

Design: Horizontal (HT) or vertical (BT / TT), seal-less, single-stage pump with fully enclosed canned motor, coolable. ATEX-compliant version available.

Applications: Handling of aggressive, solids-containing, polymerizing, flammable, explosive, toxic, volatile or valuable liquids as well as thermal oils in the chemical and petrochemical industry.

HK (Nikkiso-KSB)* Two-stage canned motor pump with explosion protection

DN	25 - 40
Q [m ³ /h]	max. 10
H [m]	max. 300
p [bar]	max. 40
T [°C]	max. +150
n [min ⁻¹]	max. 8400
Data for $n = 8400 \text{ min}^{-1}$	

Design: Horizontal, seal-less pump with fully enclosed canned motor, two-stage design in tandem arrangement. ATEX-compliant version available.

Applications: Handling of aggressive, flammable, explosive, toxic, volatile or valuable liquids in the chemical and petrochemical industry. For small flow rates, high discharge heads and low NPSH_R.

high speed, up to 130 Hz

VN (Nikkiso-KSB)* Multistage canned motor pump with explosion protection

DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	40 - 100 max. 140 max. 450 max. 40 max. +180	Design: Horizontal, seal-less pump with fully enclosed canned motor, multistage. ATEX-compliant version available. Applications: Handling of aggressive, flammable, explosive, toxic, volatile or valuable liquids in the chemical and petrochemical industry. For high discharge heads.

also available in 60 Hz

DN (Nikkiso-KSB)* Self-priming canned motor pump with explosion protection

DN	32 - 50
Q [m³/h]	max. 40
H [m]	max. 60
p [bar]	max. 40
T [°C]	max. +180
Data for 50 Hz operation	

Design: Horizontal, seal-less pump with fully enclosed canned motor, single-stage, self-priming. ATEX-compliant version available.

Applications: Handling of aggressive, flammable, explosive, toxic, volatile or valuable liquids in the chemical and petrochemical industry. Self-priming pump for draining of tanks and unloading of tanks and tank trucks.

also available in 60 Hz

35

Process pumps

RPH[®] OH2 process pump to API 610

	DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation	25 - 400 max. 4150 max. 270 max. 51 max. +450	Design: Horizontal, radially split volute casing pump in API 610, ISO 13709 (heavy-duty), with radial impeller, si centreline pump feet; with inducer, if required. ATEX-con Applications: Refineries, petrochemical and chemical	ngle-stage, single-entry, npliant version available.
Hyamaster			Reference no. 1312.5 / 1316.51	also available in 60 Hz

RPHb BB2 process pump to API 610

DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operatio	50 - 150 max. 450 max. 400 max. 100 max. +450	 Design: Horizontal, radially split volute casing pump in back pull-out design to API 610 and / or VDMA 24 297, Class A (heavy-duty), with radial impeller, single-entry, two-stage design, back-to-back impeller arrangement, centreline pump feet. Applications: Refineries, petrochemical and chemical industry.
		also available in 60 Hz

RPH-V VS4 process pump to API 610

DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation	40 - 150 max. 80 max. 240 max. 35 max. +230	Design: Vertical, radially split volute casing pump to API 610 and ISO 13709 (heavy-duty), with radial impeller, single-entry, single-stage. Applications: Refineries, petrochemical and chemical industry.
		also available in 60 Hz

RPHmdp Standardised chemical pump with mag-drive to API 685

DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operat suitable for 50 and 60	Design: Horizontal, radially split volute casing pump in back pull-out design to API 685, ISO 13709 (heavy-duty), single-stage, single-entry, with radial impeller and centreline pump feet; with inducer, if required. ATEX-compliant. Applications: Refineries, petrochemical and chemical industry, power stations.
	Reference no. 1316.27/01/1316.8017/01/1316.57/01 available in 50 Hz and 60 Hz

Reference no. 1316.27/01/1316.8017/01/1316.57/01 available in 50 Hz a

CTN Chemical vertical shaft submersible pump

-	-		
DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz op suitable for 50 an	25 - 250 / 250 - 400 max. 950 max. 115 max. 16 max. +300 eration, d 60 Hz operation	dry installation, single- or double-stage, si available. ATEX-compliant version availab	ggressive liquids, also slightly contaminated or
		Reference no. 2711.5	available in 50 Hz and 60 Hz

Process pumps

API series (Nikkiso-KSB)* Refinery pump

Ň.	DN Q [m³/h] H [m] p [bar] T [°C]
	Data for 50 Hz

DN	1½ - 6
Q [m ³ /h]	max. 360
H [m]	max. 220
p [bar]	max. 40
T [°C]	max. +450
Data for 50 Hz operation	

Design: Horizontal or vertical canned motor pump to API 685, single-stage, with centreline pump feet; also available with inducer.

Applications: HNP: for clean liquids; HTP: for hot fluids; HSP / HMP: for contaminated or polymerising fluids; HRP: for fluids with a steep vapour pressure curve such as liquefied gases.

also available in 60 Hz

CHTR BB5 high-pressure pump to API 610

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operat higher values availabl	Design: Horizontal, high-pressure barrel-type pun double-entry, multistage, with flanges / weld end r Applications: In refineries, in the petrochemical plants.	nozzles to DIN, API 610 and ANSI.
	Reference no. 2701	also available in 60 Hz

YNKR BB2 process pump to API 610

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation higher values available to	Design: Horizontal, radially split, single-stage, double volute casing made of cast steel, in accordance with A Applications: In refineries, in the petrochemical induand in steam generation plants.	PI 610.
	Reference no. 1139.21	also available in 60 Hz

CINCP / CINCN Vertical immersion pump for sumps and tanks

IJ	DN 32 - 2 Q [m³/h] max. 7 H [m] max. 1 p [bar] max. T [°C] -10 to +1 n [min ⁻¹] max. 30 Data for 50 Hz operation	 installation. Semi-open impeller, pump shaft without guide bearing, supported by ball bearings in the upper section. Supplied with discharge pipe extending above the baseplate (CINCP) or without discharge pipe (CINCN). ATEX-compliant version available. Applications: Chemical and petrochemical industry, raw materials extraction processes
Hyamaster		also suitable for 60 Hz operation

INVCP / INVCN Vertical immersion pump for sumps and tanks

IJ	DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation	32 - 300 max. 1600 max. 116 max. 10 -10 to +100 max. 3000	Design: Centrifugal vertical sump pump, for wet or dry well installation, available with closed or semi-open impeller. Supplied with discharge pipe extending above the baseplate (INVCP) or without discharge pipe (INVCN). ATEX-compliant version available. Applications: Handling of chemically aggressive, slightly contaminated or solids-laden fluids in the chemical and petrochemical industries.
📕 Hyamaster			also suitable for 60 Hz operation

Process pumps

RWCP / RWCN Vertical immersion pump for sumps and tanks

Ţ	DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operatio	50 - 200 max. 700 max. 100 max. 16 -10 to +100 max. 3000	 Design: Process pump with free-flow, semi-open or two- / three-channel impeller. Shaft sealed by mechanical seal or gland packing with various API pipework plans. Oil-lubricated bearings. ATEX-compliant version available. Applications: Refineries, chemical and petrochemical industry, steel factories, descaling systems, raw materials extraction processes and waste water management.
Hyamaster			also suitable for 60 Hz operation

WKTR VS6 condensate pump to API 610

DN Q [m ³ /h] H [m] p [bar] Install. depth [m] T [°C] n [min ⁻¹] Data for 50 Hz operation	40 - 150 max. 400 max. 500 max. 51 1.6 max. 200 max. 3000	Design: Vertical can-type ring-section pump. Type VS multistage, first-stage impeller designed as suction in ATEX-compliant version available. Applications: Pumping of condensate and other NI systems, particularly in refineries and petrochemical p	npeller, radial impellers. PSH critical products in industrial
		Reference no. 1765.11	also available in 60 Hz

Rainwater harvesting systems

Hya-Rain[®] / Hya-Rain[®] N Rainwater harvesting system with one pump

Rp Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation	1 max. 4 max. 43 max. 6 max. +35	Design: Ready-to-connect package rainwater harvesting system. Automatic mains water back-up if the rain water storage tank is empty, with integrated dry-running protection. Automated with automatic control unit. Applications: Rainwater and service water utilization, irrigation and spray irrigation systems.
		Reference no. 5602.51

Hya-Rain[®] Eco Rainwater harvesting system with one pump

Rp Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	1 max. 4 max. 43 max. 6 max. +35	Design: Ready-to-connect package rainwater harvesting system. Automatic mains water back-up function if the rain water storage tank is empty, with integrated dry-running protection. Applications: Rainwater and service water utilization, irrigation and spray irrigation systems.
		Reference no. 5605.5

Domestic water supply / swimming pools

Multi Eco[®] Multistage, self-priming centrifugal pump

	Rp Q [m³/h] H [m] p [bar] T [°C] n [min°1]	1 - 1¼ max. 8 max. 54 max. 10 max. +50 max. 2800	Design: Multistage, self-priming centrifugal pump in close-coupled design. Applications: Single- or two-family houses, agricultural facilities, spray irrigation and irrigation systems, washing plants, water supply and rainwater harvesting systems.
Controlmatic, Cervomatic			Reference no. 5180.5

Multi Eco®-Pro Multistage, self-priming centrifugal pump with automatic control unit

Rp Q [m³/h] H [m] p [bar] T [°C] n [min°1]	1 - 1¼ max. 8 max. 54 max. 10 max. +50 max. 2800	Design: Multistage, self-priming centrifugal pump in close-coupled design, with power cable, plug and Controlmatic E automatic control unit switching the pump on and off as consumers are opened / closed and protecting the pump against dry running. Automated with automatic control unit. Applications: Single- or two-family houses, agricultural facilities, spray irrigation and irrigation systems, washing plants, water supply and rainwater harvesting systems.
		Reference no. 5182.5

Multi Eco[®]-Top Domestic water supply system

	Rp	1 - 1¼	Design: Multistage, self-priming centrifugal pump in close-coupled design incl.
	Q [m³/h]	max. 8	accumulator with replaceable membrane in drinking water quality, total volume 20 or
	H [m]	max. 54	50 l, pressure switch for automatic pump operation and 1.5 m power cable. Automated
	p [bar]	max. 7	with automatic control unit.
	T [°C]	max. +50	Applications: Single- or two-family houses, agricultural facilities, spray irrigation and
	n [min ⁻¹]	max. 2800	irrigation systems, washing plants, water supply and rainwater harvesting systems.
68			Reference no. 5181.5

Movitec[®] VME High-pressure in-line pump in close-coupled design

	Rp Q [m³/h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation	1½ max. 9 max. 48 max. 16 max. +60 max. 2900	 Design: Multistage, vertical (horizontal installation upon request) high-pressure centrifugal pump, with suction and discharge nozzles of identical nominal diameters arranged opposite to each other (in-line design). Applications: Single- or two-family houses, agricultural facilities, spray irrigation and irrigation systems, washing plants, water supply and rainwater harvesting systems, pressure boosting, hot water and cooling water recirculation, fire-fighting systems.
PumpMeter, Hyamaster			Reference no. 1798.5 also available in 60 Hz

IXO Submersible motor pump

	Rp Q [m ³ /h] H [m] T [°C] n [min ⁻¹]	1¼ max. 8 max. 65 max. +35 max. 2900	Design: Fully or partly submerged, multistage, close-coupled centrifugal pump (min. immersion depth 0.1 m), low-level inlet, suction strainer with a max. mesh size of 2.5 mm. Applications: Water supply, spray irrigation and irrigation systems, washing plants, rainwater harvesting systems, water extraction from wells, tanks and cisterns.
Switchgears, Cervomatic			Reference no. 2146.5

Domestic water supply / swimming pools

Filtra N Recirculating pump for swimming pool filtering systems

-		-
0	A	
	20	

Rp	2
Q [m³/h]	max. 36
H [m]	max. 21
p [bar]	max. 2.5
T [°C]	max. +35
n [min ⁻¹]	max. 2800

Design: Self-priming, single-stage, close-coupled centrifugal pump. Applications: Handling of clean or slightly contaminated water, swimming pool water with a chlorine content of up to 0.3 %, ozonized swimming pool water with a salt content of up to 7 ‰.

Pressure booster systems

Hya[®]-Solo EV Pressure booster system, 1 pump, with continuously variable speed control

Rp Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz opera	1¼ / 1½ max. 6 max. 50 max. 10 max. +60 tion, data for 2900 min ⁻¹	 Design: Fully automatic package pressure booster system, with 1 vertical high-pressure pump and continuously variable speed adjustment. Configuration and function to DIN 1988-500. Applications: Residential buildings, hospitals, office buildings, hotels, department stores, industry, and other applications.
		Reference no. 1951.53

Hya[®]-Solo D Pressure booster system, 1 pump

	Rp / DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	1¼ / 100 max. 110 max. 150 max. 16 max. +70	 Design: Fully automatic package single-pump system with 8 l membrane-type accumulator, pressure-controlled starting and stopping. Applications: For industrial plants, water supply systems for residential and office buildings, irrigation / spray irrigation and rainwater harvesting systems, service water supply systems in trade and industry.
•			Reference no. 1951.5

Hya[®]-Solo DV Pressure booster system, 1 pump

	Rp / DN	1¼ / 100
1-1	Q [m³/h]	max. 110
	H [m]	max. 150
CTTP	p [bar]	max. 16
	T [°C]	max. +70
	Data for 2900 min ^{.1}	
- the fight	Data for 2900 min'	

Design: Fully automatic variable-speed package single-pump system with PumpDrive, pressure-controlled starting and flow-controlled stopping. Automated with PumpDrive. Applications: For industrial plants, water supply systems for residential and office buildings, irrigation / spray irrigation and rainwater harvesting systems, service water supply systems in trade and industry.

Pressure booster systems

Hya[®]-Compact K Pressure booster system, 2 pumps

Rp / DN 1¼ / 40 Q [m³/h] max. 10 H [m] max. 100 p [bar] max. 10 T [°C] max. +40 Data for 50 Hz operation, data for 2900 min ⁻¹	 Design: Fully automatic package pressure booster system with integrated standby pump. Two vertical high-pressure pumps in cascade operation, automated with BoosterControl Advanced. Integrated pressure transmitter for the suction and discharge side, respectively. Two standard volt-free changeover contacts for fault indication as standard. Configuration and function to DIN 1988-500. Stationary floor-mounted or wall-mounted installation. Applications: For industrial plants, water supply systems for residential and office buildings, irrigation/spray irrigation and rainwater harvesting systems, service water supply systems in trade and industry.
	Reference no. 1972.5

Hya®-Compact VP Pressure booster system, 2 pumps

	Rp / DN Q [m³/h] H [m] p [bar] T [°C]	1¼ / 40 max. 10 max. 100 max. 10 max. 40	Design: Fully automatic package pressure booster system with integrated standby pump. Two vertical high-pressure pumps with continuously variable speed adjustment by BoosterControl Advanced. Two standard volt-free changeover contacts integrated for fault indication. Configuration and function to DIN 1988-500. Stationary floor-mounted or wall-mounted installation.
Data for 50 Hz	Data for 50 Hz operat	ion, data for 2900 min ^{.1}	Applications: For industrial plants, water supply systems for residential and office buildings, irrigation / spray irrigation and rainwater harvesting systems, service water sup- ply systems in trade and industry.
			Reference no. 1972.5

Hya[®]-Eco VP Pressure booster system with continuously variable speed control of each pump

Rp / DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 3500 min ¹	2 / 80 max. 70 max. 120 max. 16 max. +70	Design: Fully automatic package pressure booster system, with 2 or 3 vertical high- pressure pumps and continuously variable speed adjustment of each pump for fully electronic control of the required supply pressure, with two standard volt-free changeover contacts for fault indication. Configuration and function to DIN 1988-500. Automated with BoosterControl Advanced. Applications: Residential buildings, hospitals, office buildings, hotels, department stores, industry, and other applications.
		Reference no. 1967.52

Hyamat[®] K Pressure booster system, 2 to 6 pumps

Rp / DN Q [m³/h] H [m] p [bar] T [°C]	1½ / 250 max. 660 max. 160 max. 16 max. +70	Design: Fully automatic package pressure booster system, with 2 to 6 vertical high-pressure pumps, fully electronic control to ensure the required supply pressure, with volt-free changeover contact for general fault indication and live-zero monitoring of the connected sensors, configuration and functions to DIN 1988-500. Automated with BoosterControl Advanced.
Data for 50 Hz operation		Applications: Residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.
		Reference no. 1952.5

Hyamat[®] V Pressure booster system with continuously variable speed adjustment of one pump

Rp / DN	1½ / 250	Design: Fully automatic package pressure booster system, with 2 to 6 vertical high-
Q [m³/h]	max. 660	pressure pumps and continuously variable speed adjustment of one pump for fully
H [m]	max. 150	electronic control of the required supply pressure. Configuration and functions to
p [bar]	max. 16	DIN 1988-500. Automated with BoosterControl Advanced.
T [°C]	max. +70	Applications: Pressure boosting in residential buildings, hospitals, office buildings,
Data for 2900 min ⁻¹	max. 170	

Reference no. 1953.51

Pressure booster systems

Hyamat[®] VP Pressure booster system with continuously variable speed control of each pump

Rp / DN Q [m³/h] H [m] p [bar] T [°C] Data for 2900 min1	11/2 / 250 max. 660 max. 150 max. 16 max. +70	 Design: Fully automatic package pressure booster system, with 2 to 6 vertical high-pressure pumps and continuously variable speed control of each pump by PumpDrive speed control system. For fully electronic control of the required supply pressure. Configuration and functions to DIN 1988-500. Automated with BoosterControl Advanced and PumpDrive. Applications: Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.
		Reference no. 1953.52

Hyamat[®] IK, IV, IVP Pressure booster system for industrial applications

DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	100 - 200 max. 640 max. 160 max. 16 max. +70	Design: Fully automatic package pressure booster system, with 2 to 4 vertical high- pressure pumps and fully electronic control to ensure the required supply pressure, configuration and functions to DIN 1988-500. Automated with PLC. Applications: Handling of service water and cooling water not chemically or mechanically aggressive to the pump materials in industry, etc.
		Reference no. 1950.5

Drainage pumps / waste water pumps

Ama-Drainer[®] N 301, 302, 303, 358 Submersible motor pump

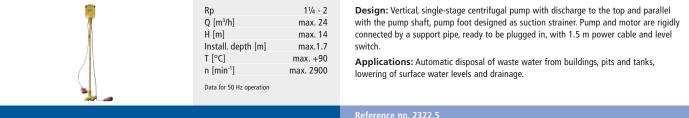
	Rp 11 Q [m³/h] ma H [m] n T [°C] max. +50 (301, 30) max. +50 300 Data for 50 Hz operation	 single-stage, with or without level control, max. immersion depth 2 m. Applications: Automatic drainage of pits, shafts, yards and cellars subject to a flooding risk, lowering of surface water levels, dewatering, drainage of underground passages,
Switchgears, LevelControl		Reference no. 2331.51 / 2331.52

Ama-Drainer® 400/10 400/35 500/10/11 Submersible motor pump

	Rp Q [m ³ /h] H [m] T [°C] Data for 50 Hz operation	1½ - 2 max. 50 max. 24 max. +40	Design: Vertical, fully floodable submersible motor pump in close-coupled design, IP 68, single-stage, with or without level control, max. immersion depth 10 m. Applications: Automatic drainage of pits, shafts, yards and cellars subject to a flooding risk, lowering of surface water levels, dewatering, drainage of underground passages, water extraction from rivers and reservoirs, disposal of highly contaminated, fibre-containing water.
Switchgears, LevelControl			Reference no. 2331.53

Drainage pumps / waste water pumps

Ama-Drainer® 80, 100 Submersible motor pump


42

	Rp / DN Q [m³/h] H [m] T [°C] Data for 50 Hz operation	2½ / 100 max. 130 max. 26 max. +50	Design: Vertical, fully floodable submersible motor pump in close-coupled design, IP 68, single-stage, with or without level control, max. immersion depth 10 m. Applications: Automatic drainage of pits, shafts, yards and cellars subject to a flooding risk, lowering of surface water levels, dewatering, drainage of underground passages, water extraction from rivers and reservoirs.
Switchgears, LevelControl			Reference no. 2331.54

Ama-Porter[®] F / S Submersible motor pump

	DN Q [m³/h] H [m] T [°C] Data for 50 Hz operati	50 - 65 max. 40 max. 21 max. +40	Design: Vertical, fully floodable submersible waste water pump in close-coupled design (cast iron variant), single-stage, without explosion protection. Applications: Handling of all types of waste water.
Switchgears, LevelControl			Reference no. 2539.51
Rotex [®] Waste water pump			

Notex waste water pump

MK / MKY Waste water, condensate and heat transfer liquid pump

	Rp / DN Q [m ³ /h] H [m] Install. depth [m] T [°C] n [min ⁻¹] Data for 50 Hz operation	2 / 50 max. 36 max. 19 max. 2.8 max. +200 max. 3500	Design: Vertical submersible pump with three-channel impeller, volute casing designed as suction strainer. Applications: Handling of condensate and heat transfer liquids below the boiling point, condensate return systems, primary and secondary heating circuits, direct installation in heating tanks or heat exchangers in the secondary circuits of heat transfer systems (MKY).
Switchgears, LevelControl			Reference no. 2324.5

Lifting units / pump stations

AmaDS³ Waste water pump station with solids separation system

	Inflow rate [m³/h] 6 - 200 H [m] max. 85 T [°C] depending on pump n [min ⁻¹] depending on pump Viscosity [cP] depending on pump Higher values available upon request	Design: Waste water pump station with solids separation system. Indirect hydraulic transport of waste water, with solids separators upstream of the pumps, for maximum economic efficiency, operating reliability and ease of maintenance. Applications: Municipal and industrial waste water transport. Applications with special drainage requirements, e.g. hotels, hospitals, campgrounds, etc.
EvelControl		Reference no. 2581 / 2567.021

Ama-Drainer-Box Automatic waste water lifting unit

DN Q [m ³ /h] H [m] T [°C] Data for 50 Hz operation	40 - 50 max. 46 max. 24 max. +40	Design: Stable above-floor or impact-resistant underfloor plastic collecting tank with floor drain and odour trap, both variants with Ama-Drainer submersible motor pump starting and stopping automatically and swing check valve. Automated with switchgear and LevelControl. Volumetric tank content: 100 or 200 litres. To EN 12050. Applications: Washbasins, showers, washing machines, garage gateways, basements, rooms at risk of flooding, etc.
		Reference no. 2336.51

Ama-Drainer-Box Mini Automatic waste water lifting unit

DN Q [m³/h] H [m] T [°C] Data for 50 Hz operation	40 max. 10 max. 6.5 max. +35	 Design: Reliable and compact waste water lifting unit in a modern design with activated carbon filter meeting hygiene requirements and with shower connection as a standard. To EN 12050-2. Applications: Automatic drainage of washbasins, showers, washing machines, dishwashers, etc.
		Reference no. 2336.52

mini-Compacta Floodable sewage lifting unit

xxx (b)	DN 32 - 100 Q [m³/h] max. 36 H [m] max. 25 T [°C] max. +40 up to +65 for short periods Data for 50 Hz operation	Design: Floodable single-pump or dual-pump sewage lifting unit for automatic disposal of domestic sewage and faeces below the flood level. Automated with LevelControl. Applications: Basement flats, bars, basement party rooms and saunas, cinemas and theatres, department stores and hospitals, hotels, restaurants, schools, etc.
		Reference no. 2317.54

Compacta[®] Floodable sewage lifting unit

DN Q [m ³ /h] H [m] T [°C] up to +65 f Data for 50 Hz operation	80 - 100 max. 140 max. 24 max. +40 for short periods	Design: Floodable single-pump or dual-pump sewage lifting unit for automatic disposal of sewage and faeces below the flood level. Automated with LevelControl. Applications: Basement flats, bars, basement party rooms and saunas, cinemas and theatres, department stores and hospitals, hotels, restaurants, schools, public buildings, industrial plants, joint sewage disposal for rows of houses, etc.
		Reference no. 2317.55

Lifting units / pump stations

CK 800-Eu Pump Station Pump station, plastic collecting tank with Amarex N S and Ama-Porter S

DN Q [m ³ /h] H [m] T [°C] Data for 50 Hz operation	32 - 50 max. 22 max. 49 max. +40	 Design: Ready-to-connect package single or dual pump station with PE-LLD (polyethylene) collecting tank for underground installation. Equipped with one or two Amarex N S and Ama-Porter S submersible waste water pumps without explosion protection. Collecting tank design to DIN 1986-100 and EN 752 / EN 476. Automated with LevelControl. Applications: Renovation of premises, sewage disposal in various sectors, joint sewage disposal for several residential units, pumped drainage.
		Reference no. 2334.543

Ama-Porter CK Pump Station Pump station, plastic collecting tank with Ama-Porter F

1.	DN Q [m³/h] H [m] T [°C] Data for 50 Hz operation	50 - 65 max. 40 max. 21 max. +40	Design: Ready-to-connect package single or dual pump station with PE-LLD (polyethyl- ene) collecting tank for underground installation. Equipped with one or two Ama-Porter F submersible waste water pumps without explosion protection. Collecting tank design to DIN 1986-100 and EN 752 / EN 476. Automated with switchgears and LevelControl. Applications: Renovation of premises, sewage disposal in various sectors, joint sewage disposal for several residential units, pumped drainage.
			Reference no. 2334.51

Amarex N CK Pump Station Pump station, plastic collecting tank with Amarex N F

disposal for several residential units, pumped drainage.		T [°C] max. +40 design to DIN 1986-100 and EN 752 / EN 476. Automated with LevelControl.	1			Design: Ready-to-connect package single or dual pump station with PE-LLD (polyethyl- ene) collecting tank for underground installation. Equipped with one or two Amarex N F submersible waste water pumps, also available with explosion protection. Collecting tank design to DIN 1986-100 and EN 752 / EN 476. Automated with LevelControl. Applications: Renovation of premises, sewage disposal in various sectors, joint sewage disposal for several residential units, pumped drainage.
Data for 50 Hz operation Applications: Renovation of premises, sewage disposal in various sectors, joint sewage	T [°C] max. +40 design to DIN 1986-100 and EN 752 / EN 476. Automated with LevelControl.		1 1 1	H [m]	max. 39	submersible waste water pumps, also available with explosion protection. Collecting tank
T [°C] max. +40 design to DIN 1986-100 and EN 752 / EN 476. Automated with LevelControl. Data for 50 Hz operation Applications: Renovation of premises, sewage disposal in various sectors, joint sewage		H [m] max. 39 submersible waste water pumps, also available with explosion protection. Collecting tank		Q [m ³ /h]	max. 50	ene) collecting tank for underground installation. Equipped with one or two Amarex N F
H [m] max. 39 T [°C] max. +40 Data for 50 Hz operation Data for 50 Hz operation Applications: Renovation of premises, sewage disposal in various sectors, joint sewage	H [m] max. 39 submersible waste water pumps, also available with explosion protection. Collecting tank		The second se	DN	50 - 65	Design: Ready-to-connect package single or dual pump station with PE-LLD (polyethyl-

Evamatic-Box Sewage lifting unit

DN	50 - 65
Q [m³/h]	max. 40
H [m]	max. 21
T [°C]	max. +40
Data for 50 Hz operation	

Design: Single-pump or dual-pump sewage lifting unit with one or two Ama-Porter submersible waste water pumps with free-flow impeller (F) or cutter (S), to EN 12050-1. **Applications:** Disposal of domestic waste water and sewage.

Reference no. 2319.51

Submersible motor pumps

Amarex[®] N S32 Submersible motor pump DN 32

		DN Q [m ³ /h] H [m] T [°C] Data for 50 Hz operation	32 max. 16.5 max. 29.5 max. +40	Design: Vertical, single-stage submersible motor pump, for wet installation, stationary and transportable design. Amarex N pumps are floodable, single-stage, single-entry close-coupled units which are not self-priming. ATEX-compliant version available. Applications: Handling of all types of waste water, especially untreated sewage containing long fibres and solid substances, fluids containing gas / air, as well as raw, activated and digested sludge, dewatering / water extraction, drainage of rooms and surfaces subject to a flooding risk.
Switchgears, LevelControl Reference no. 2563.51	Switchgears, LevelControl			Reference no. 2563.51

Amarex[®] N Submersible motor pump DN 50 to 100

	DN Q [m³/h] H [m] T [°C] Data for 50 Hz operation	50 - 100 max. 190 max. 49 max. +60	Design: Vertical, single-stage submersible motor pump or transportable design. Amarex N pumps are floodable close-coupled units which are not self-priming. ATEX-co Applications: Handling of all types of waste water, e containing long fibres and solid substances, fluids conta activated and digested sludge, dewatering / water extra surfaces subject to a flooding risk.	e, single-stage, single-entry ompliant version available. specially untreated sewage aining gas / air, as well as raw,
Switchgears, LevelControl			Reference no. 2563.5	also available in 60 Hz

Amarex[®] KRT[®] Submersible motor pump DN 40 to DN 700

	DN Q [m ³ /h] H [m] T [°C] n [min ⁻¹] Data for 50 Hz operation	40 - 700 max. 10080 max. 120 max. +60 max. 2900	 Design: Vertical, single-stage submersible motor pur impeller types, for wet or dry installation, stationary an ATEX-compliant version available. Applications: Handling of all types of abrasive or ag waste water engineering as well as industry, especially fibres and solid substances, fluids containing gas / air, and digested sludge; seawater desalination. 	nd transportable version. ggressive waste water in water and y untreated sewage containing long
PumpDrive, Hyamaster, Amacontrol, Switchgears, LevelControl			Reference no. 2553.5	also available in 60 Hz

Amarex[®] KRT[®] dry-installed, with cooling jacket Submersible motor pump DN 100 to DN 700

	DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operat	100 - 700 max. 10080 max. 120 max. 10 max. +40 max. 1450	Design: Vertical, single-stage submersible mot impeller types, dry installation. Applications: Handling of all types of waste industry, especially sewage containing long fibr gas / air, as well as raw, activated and digested	water in waste water engineering and res and solid substances, fluids containing
PumpDrive, Hyamaster, Amacontrol, Switc	hgears, LevelCont	rol	Reference no. 2553.5	also available in 60 Hz

Amarex[®] KRT[®] wet / dry, with energy-saving motor Submersible motor pump DN 80 to DN 200

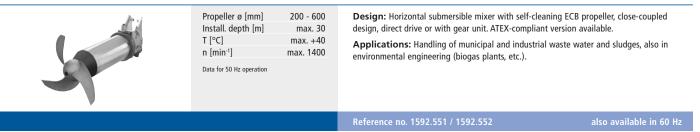
	DN Q [m³/h] H [m] T [°C] n [min'1] Data for 50 Hz operation	80 - 200 max. 550 max. 25 max. +40 max. 1450	Design: Horizontal or vertical single-stage submersible design, with various impeller types, for wet or dry instal transportable version, with energy-saving motor. Applications: Handling of all types of waste water in industry, especially sewage containing long fibres and s gas / air, as well as raw, activated and digested sludge.	ation, stationary and waste water engineering and
PumpDrive, Hyamaster, Amacontrol, Switchgears, LevelControl		Reference no. 2553.5	also available in 60 Hz	

Submersible pumps in discharge tubes

Amacan[®] K Submersible motor pump with non-clogging impeller

	DN Q [m³/h] H [m] T [°C] n [min ^{.1}] Data for 50 Hz operatio	700 - 1400 max. 7200 max. 30 max. +40 max. 980	Design: Wet-installed submersible motor pr single-entry, for installation in discharge tub Applications: Handling of pre-cleaned, ch effluents and sewage, fluids not containing a and sills, as waste water, mixed water and a plants, irrigation and drainage pumping syste	emically neutral waste water, industrial any stringy substances pretreated by screens ctivated sludge pump in effluent treatment
Hyamaster, Amacontrol			Reference no. 1579.5	also available in 60 Hz

Amacan[®] P Submersible motor pump with axial propeller


	DN Q [m³/h] H [m] T [°C] n [min ⁻¹] Data for 50 Hz operation	500 - 1500 max. 25200 max. 12 max. +40 max. 1450	Design: Wet-installed, submersible motor pump w for installation in discharge tubes, single-stage, sing available. Applications: Irrigation and drainage pumping st handling of raw and clean water in water and efflur in power stations and industrial plants, industrial w and flood control systems, aquaculture.	gle-entry. ATEX-compliant version ations, stormwater pumping stations, ent treatment plants, of cooling water
Hyamaster, Amacontrol			Reference no. 1580.5	also available in 60 Hz

Amacan[®] S Submersible motor pump with mixed flow impeller

	DN Q [m ³ /h] H [m] T [°C] n [min ⁻¹] Data for 50 Hz operation	650 - 1300 max. 10800 max. 40 max. +30 max. 1450	Design: Wet-installed submersible motor pump wi for installation in discharge tubes. ATEX-compliant v Applications: Handling of water without stringy s drainage pumping systems, general water supply systems.	version available. Substances in irrigation and
Hyamaster, Amacontrol			Reference no. 1589.5	also available in 60 Hz

Mixers / agitators / tank cleaning units

Amamix Submersible mixer

Amaprop Submersible agitator

R	Propeller ø [mm] Install. depth [m] T [°C] n [min ⁻¹]	1000 - 2500 max. 30 max. +40 max. 109	Design: Horizontal submersible agitator with self-cleaning ECB propeller, close-coupled design, equipped with coaxial spur gear. ATEX-compliant version available. Applications: In environmental engineering, particulary for circulating, keeping in suspension and inducing flow in municipal and industrial waste water and sludges; in nitrification and denitrification tanks, activated sludge tanks, mixing tanks, final storage tanks, biological phosphate elimination tanks, flocculation tanks and in biogas applications.
			Reference no. 1592.505

Amajet Cleaning system

DN	100 - 150	Design: Stationary or portable unit with horizontal or vertical submersible motor
Q [m³/h]	max. 195	propulsive jet pump with non-clogging free-flow impeller. Motor rating 5.5 to 27 kW.
T [°C]	max. +40	Available variants: Amajet, SewerAmajet, SwingAmajet, MultiAmajet.
n [min ⁻¹]	max. 1450	Applications: Cleaning of stormwater tanks and storage sewers.

Amaline Submersible motor recirculation pump

DN Q [m³/h] H [m] T [°C] n [min ⁻¹]	300 - 800 max. 5400 max. 2 max. +40 max. 960	Design: Wet-installed, horizontal propeller pump with submersible motor, equipped with spur gear or direct drive, ECB propeller with 3 rigid, fibre-repellent blades, bolt-free connection to the discharge pipe. ATEX-compliant version available. Applications: Recirculation of activated sludge in waste water treatment systems.
		Reference no. 1594.5

Pumps for solids-laden fluids

Sewatec[®] / Sewabloc Dry-installed volute casing pump

	DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation	50 - 700 60 - 10000 max. 95 max. 10 max. +70 max. 2900	Design: Horizontal or vertical volute casing pump with free-fi multi-channel (K) and diagonal single vane (D) impellers, disch ANSI standards. ATEX-compliant version available. Applications: Handling of sewage and all types of waste wa management and industry.	arge flange to DIN and
🛑 Hyamaster, PumpDrive, LevelControl			Reference no. 2580.5 / 2580.45 / 2580.35	also available in 60 Hz

KWP® / KWP®-Bloc Non-clogging impeller centrifugal pump / close-coupled unit

	- 900 (1000) 5000 (18000) max. 100 max. 10 -40 to +120 (max. +280) max. 2900	 Design: Horizontal, radially split volute casing pump in back pull-out or close-coupled design, single-stage, single-entry, available with various impeller types: non-clogging impeller, open multi-channel impeller, free-flow impeller. ATEX-compliant version available. Applications: Handling of pre-treated sewage, waste water, all types of slurries without stringy substances and pulps up to 5 % bone dry.
Hyamaster		Reference no. 2361.5 / 2362.5 / 2361.450 / 2361.453 / 2361.460

Slurry pumps

WBC Slurry pump

Q [m³/h]	max. 13600
H [m]	max. 80
o [bar]	max. 40
[°C]	max. +120

Design: Patented design incorporates state-of-the art hydraulic and wear technologies for heavy-duty, high-pressure applications. The pump shell is designed to reduce stresses that can cause a structural failure during a pressure surge.

Applications: Ideal for ore and tailings transport to minimize the effect of sudden pressure spikes.

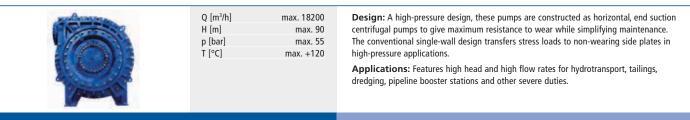
LSA-S Slurry pump

Q [m³/h]	max. 14000
H [m]	max. 90
p [bar]	max. 16
T [°C]	max. +120

Design: Premium design hard iron pumps for long wear life pumping severe slurries. The basic, single-wall construction and heavy section, hard metal wet end combined with the cartridge bearing assembly provides maximum reliability and ease of maintenance.

Applications: Pumps are widely used in ore transport, mill discharge, cyclone feed, tailings and plant process.

Slurry pumps


LCC-M Slurry pump

Q [m³/h] H [m] p [bar] T [°C]	max. 3865 max. 90 max. 16 max. +120	 Design: The hydraulic wet end consists of three components: a shell or casing, an impeller and a suction plate / liner to permit easy removal for maintenance and inspections. Applications: Reliable pumps for high discharge head, mildly corrosive slurries and a wide range of particle sizes. Used in mineral processing, mine dewatering, ash and tailings.

LCC-R Slurry pump

Q [m³/h] H [m] p [bar] T [°C]	max. 3865 max. 90 max. 16 max. +120	Design: Interchangeable rubber and metal design allows best material choice for any application. Easy wet end change can adapt existing pumps to new applications. Applications: Pumps are suitable for moderate discharge heads, fine particles and highly corrosive slurries.

TBC Slurry pump

LCV Slurry pump

Q [m³/h] H [m] p [bar] T [°C]	max. 1360 max. 38 max. 14 max. +120	Design: Vertical cantilever, rugged hard metal sump pump with bottom suction and no submerged bearings. Replaceable wet end parts in metal alloys with a durable mechanical end. Applications: Ideal for industrial process pumping, tailings disposal in mining and pit use.

FGD Slurry pump

Q [m³/h] H [m]	max. 22700 max. 45
p [bar]	max. 45
T [°C]	max. +120

Design: High-flow / low-head hard metal pumps with a single-wall shell design. High-efficiency impeller. Suction-side liner is equipped with integrated mounting plates. **Applications:** Absorber recirculation and ancillary process pumps.

Slurry pumps

Mega Slurry pump

Q [m³/h]	max. 45
H [m]	max. 30
p [bar]	max. 24
T [°C]	max. +120

Design: Horizontal, end suction, modified volute casing pump includes 3 vane open design impeller for large solids passage.

Applications: High-performance, low maintenance slurry pump recommended for coarse or fine particles from solids-laden waste water to aggressive slurries of an abrasive nature.

HHD Slurry pump

Q [m³/h]	max. 14400
H [m]	max. 90
p [bar]	max. 29
T [°C]	max. +120

Design: Best suited for high-flow, high-head pumping where high production requires the reduction in the number of pumps.

Applications: Ideal for pipeline booster stations and severe mining duties. Also, as booster or main hull pump on cutter suction dredges.

MHD Slurry pump

Q [m³/h]	max. 32000
H [m]	max. 80
p [bar]	max. 28
T [°C]	max. +120

Design: Designed to provide high flow / medium head with high efficiency for high volume transportation in long pipelines.

Applications: Ideal for pipeline booster stations and severe mining duties. Also for hopper dredges or as main pump on cutter dredges.

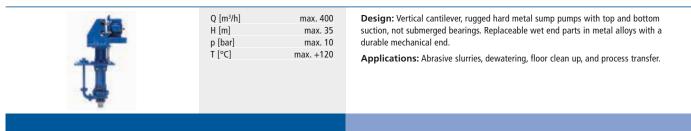
LHD Slurry pump

Q [m³/h]	max. 21600
H [m]	max. 65
p [bar]	max. 17
T [°C]	max. +120

Design: High-flow / low-head design with balanced NPSHR and sphere passage for high volume transportation over short distance.

Applications: Ideal for sand and gravel, severe mining, dredge ladder and booster pumps.

MDX Slurry pump


Q [m³/h]	max, 14000
Q [III-/II]	IIIdX. 14000
H [m]	max. 90
p [bar]	max. 16
T [°C]	max. +120

Design: The latest technology from GIW provides superior wear life and increased up-time handling your most aggressive slurry applications.

Applications: Designed for SAG and ball mill discharge duties as well as cyclone feed and screen feed applications in ore mining.

Slurry pumps

ZW Slurry pump

HVF Slurry pump

Q [m³/h] H [m] p [bar] T [℃]	max. 400 max. 35 max. 10 max. +120	Design: Provides continuous operation without shutdown or operator intervention. The new hydraulic design removes air from the impeller eye while the pump is running, and the pump can be retrofitted into any existing operation. Applications: For use in all froth pumping applications in both the mineral processing and industrial minerals industries.

Self-priming pumps

Etaprime[®] L Self-priming pump for pure or contaminated liquids

DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	25 - 125 max. 180 max. 85 max. 10 max. +90	Design: Horizontal, long-coupled, self-priming volute casing design, single-stage, with open multi-vane impeller. ATEX-com Applications: Handling of pure, contaminated or aggressive abrasive substances and / or solids.	pliant version available.
		Reference no. 2745.5	also available in 60 Hz

Etaprime[®] B / BN Self-priming close-coupled pump for pure or contaminated liquids

DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation	25 - 100 max. 130 max. 72 max. 10 max. +90	Design: Horizontal, self-priming volute casing pump, single-stage, with open multi-vane impeller, in close-coupled design, with common pump and motor shaft (B) or rigidly connected (BN). ATEX-compliant version available. Applications: Handling of pure, contaminated or aggressive liquids not containing abrasive substances and / or solids.

Reference no. 2746.5

51

Self-priming pumps

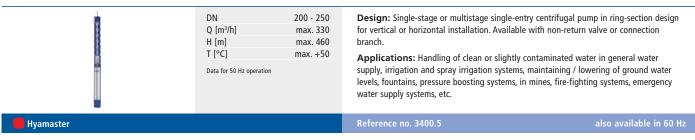
MZ Self-priming multistage liquid ring pump

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation	20 - 50 max. 21 max. 140 max. 16 -5 to +120 max. 1500

Design: Self-priming multistage liquid ring pump in close-coupled design, with mechanical seal or gland packing.

Applications: Boiler feed, sanitary hot water, hydrophore systems for fresh and seawater, and fresh water pre-heating.

Submersible borehole pumps


S 100D / UPA 100C Submersible borehole pump

	DN Q [m³/h] H [m] T [°C]	100 max. 16 max. 400 max. +30	Design: Multistage centrifugal pump in ring-section design, for vertical or horizontal installation, impellers made of plastic (S 100D) or stainless steel (UPA 100C) for well diameters of 100 mm (4 inches) and above, available with single-phase a.c. motor or three-phase motor with motor lead.		
Data for 50 Hz operation			Applications: Domestic water supply, irrigation and spray irr of ground water levels, fire-fighting systems, cooling circuits, fountains, pressure boosting and air-conditioning systems.	igation systems, lowering	
Switchgears, Cervomatic			Reference no. 3400.5	also available in 60 Hz	

UPA 200, 200B, 250C Submersible borehole pump

Submersible borehole pumps

UPA 300, 350 Submersible borehole pump

	DN Q [m ³ /h] H [m] T [°C] Data for 50 Hz operation	300 - 350 max. 840 max. 480 max. +50	Design: Single- or multistage, single-entry cent vertical or horizontal installation. Non-return val Mixed flow hydraulic systems available with redu Applications: Handling of clean or slightly cor supply, irrigation and spray irrigation systems, m levels, in mines, fire-fighting systems, fountains, o	ve or connection branch on option. uced impeller diameters. ntaminated water in general water aintaining / lowering of ground water
Hyamaster			Reference no. 3400.5	also available in 60 Hz

UPZ, BSX-BSF Submersible borehole pump

H [m] m	ax. 2200 pump in ring-section design for	, single-entry (BSX-BSF) or double-entry (UPZ) centrifugal r vertical or horizontal installation. ean or slightly contaminated water, maintaining / lowering s.
	Reference no. 3470.021	also available in 60 Hz

BEV Deep-well vertical turbine pump

t	DN Q [m³/h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation	80 - 400 max. 2200 max. 350 max. 40 +5 to +75 max. 3000	 Design: Vertical multistage deep-well turbine pump with closed impellers. Column section with bearing, shaft sleeve; shaft sealed by gland packing. Driven by electric motor or diesel engine. ATEX-compliant version available. Applications: Handling of clean water, agriculture, irrigation and collection, public water supply, industry, fire-fighting, etc.
---	--	--	---

also available in 60 Hz

High-pressure pumps, fixed / variable speed

Movitec[®] V / LHS / VS / VC High-pressure in-line pump

	Rp / DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operat	1 - 2 / 25 - 100 max. 113 max. 401 max. 40 max. +140 max. 2900	Design: Multistage, vertical high-pressure cen suction and discharge nozzles of identical nomi other (in-line design), close-coupled. ATEX-com Applications: Spray irrigation, irrigation, was pressure boosting systems, hot water and cooli etc.	inal diameters arranged opposite to each pliant version available. shing, water treatment, fire-fighting and
PumpMeter, Hyamaster			Reference no. 1798.5	also available in 60 Hz

Movitec® VCI High-pressure in-line pump

54

	Rp / DN Q [m³/h] H [m] p [bar] T [°C] n [min⁻¹] Data for 50 Hz open	1¼ - 2 / 32 - 45 max. 27 max. 250 max. 40 max. +120 max. 2900	Design: Multistage, vertical high-pressure immo on a tank or platform. Applications: Machine tools, industrial machir painting systems.	
PumpMeter, Hyamaster			Reference no. 1798.54	also available in 60 Hz

Movitec® PumpDrive High-pressure in-line pump with motor-mounted variable speed system

	DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹]	25 - 100 max. 113 max. 401 max. 40 max. +140 max. 2900	Design: Multistage, vertical high-pressure of suction and discharge nozzles of identical no other (in-line design), close-coupled and mot Applications: Spray irrigation, irrigation, w pressure boosting systems, hot water and co- etc.	minal diameters arranged opposite to each or-mounted variable speed system.
📳 🛑 PumpMeter			Reference no. 1798.5 + 4070.5	also suitable for 60 Hz operation

Multitec[®] High-pressure pump in ring-section design

	DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz and	32 - 150 max. 850 max. 630 (1000) max. 63 (100) -10 to +200 max. 4000	Design: Multistage horizontal or vertical cen long-coupled or close-coupled, with axial or ra turned in steps of 90°, cast radial impellers. A Applications: Water and drinking water sup boosting systems, irrigation systems, in power reverse osmosis and washing plants, snow gu	adial suction nozzle, discharge nozzle can be TEX-compliant version available. oply systems, general industry, pressure stations, heating, filter, fire-fighting,
🛑 PumpMeter, Hyamaster, PumpDrive			Reference no. 1777.5	available in 50 Hz and 60 Hz

Multitec® PumpDrive High-pressure pump in ring-section design with motor-mounted variable speed system

	DN Q [m³/h] H [m] p [bar] T [°C] n [min ⁻¹]	32 - 125 max. 180 max. 630 max. 43 max. +140 max. 4000	Design: Multistage horizontal or vertical cer long-coupled and close-coupled variant, with impellers and motor-mounted variable speed Applications: Water and drinking water sup boosting systems, irrigation systems, in power reverse osmosis and washing plants, snow ge	axial or radial suction nozzle, cast radial system. oply systems, general industry, pressure stations, heating, filter, fire-fighting,
🚯 🛑 PumpMeter			Reference no. 1777.5 + 4070.5	also suitable for 60 Hz operation

Axially split pumps

Omega[®] Axially split volute casing pump DN 80-350

	DN Q [m ³ /h] H [m] p [bar] Tstandard model [°C] Thot water model [°C] n [min ⁻¹] Data for 50 Hz operation, higher values available upp	80 - 350 max. 2880 max. 210 max. 25 max. +80 max. +140 max. 2900	Design: Single-stage, axially split volute casing pump installation, with double-entry radial impeller, mating fl Applications: For handling water with a low solids of irrigation and drainage pumping stations, desalination power plants, fire-fighting systems, shipbuilding, distric	anges to DIN, EN or ASME. ontent, e.g. in waterworks, systems for water extraction,
Hyamaster, PumpMeter			Reference no. 1384.5 / 1384.3940	also available in 60 Hz

RDLO Axially split volute casing pump DN 350-700

DN Q [m ³ /h] H [m] p [bar] Tstandard model [°C] Thot water model [°C] n [min ⁻¹] Data for 50 Hz operation, higher values available upc	350 - 700 max. 10000 max. 240 max. 25 max. +80 max. +140 max. 1500	Design: Single-stage, axially split volute casing pump installation with double-entry radial impeller, mating f Applications: For handling water with a low solids irrigation and drainage pumping stations, desalination power plants, fire-fighting systems, shipbuilding, distri	langes to DIN, EN or ASME. content, e.g. in waterworks, systems for water extraction,
		Reference no. 1387.5 / 1387.391	also available in 60 Hz

RDLP Axially split volute casing pump DN 350-1200

	DN Q [m ³ /h] H [m] p [bar] T _{standard model} [°C] n [min ⁻¹] Data for 50 Hz operation, higher values available upo	350 - 1200 max. 18000 max. 550 max. 64 max. +80 max. 1500	Design: Single-, two- or three-stage, axially split volute casing pump for horizontal installation with double-entry radial impeller, mating flanges to DIN, ISO or ANSI. Applications: For handling water with a low solids content in water works and long-distance water supply systems.
--	---	--	---

also available in 60 Hz

56

Hygienic pumps

Vitachrom[®] Rolled steel centrifugal pump

	DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation	50 - 125 max. 340 max. 100 max. 12 max. +140	back pull-out design. The pump features a semi-open impeller and electropolished surfaces. It is very easy to clean by CIP and SIP thanks to its almost complete lack of dear volume or narrow clearances. Its wetted components are made of 1.4404/1.4409	
Hyamaster, PumpDrive			Reference no. 1966.5	also available in 60 Hz
Vitacast [®] Investment cast ce	ntrifugal pump			
and and	DN Q [m ³ /h] H [m] p [bar] T [°C]	25 - 150 max. 560 max. 100 max. 10 max. +140	Design: Maintenance-friendly volute casing pump components made of 1.4404/1.4409 (AISI 316L/CF. little dead volume; open impeller, electropolished s design for the highest requirements on cleanability TNO Nutrition and Food Research Institute to EHEL trolley (accessory).	3M) stainless steel. Designed with very surface, excellent efficiency. Hygienic / (CIP/SIP-compatible), certified by the
	Data for 50 Hz operation, other values available upon request		Applications: Hygienic handling of fluids in the	food, beverage and pharmaceutical

Applications: Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry.

PumpDrive

Vitaprime[®] Self-priming centrifugal pump

-	DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operatio other values available u	Design: Maintenance-friendly self-priming side channe all wetted components made of 1.4404/1.4409 (AISI 316 design for the highest requirements on cleanability (CIP/ with a trolley (accessory). Applications: Hygienic handling of fluids in the food, industries as well as in the chemical industry.	6L/CF3M) stainless steel. Hygienic /SIP-compatible). Also available
PumpDrive		Reference no. 1969.54	also available in 60 Hz

Vitastage[®] Multistage centrifugal pump

1	Q [m³/h] H [m] p [bar] T [°C]	max. 40 max. 150 max. 16 max. +140	Design: Multistage centrifugal pump in close-coup installation. All wetted components made of 1.4401 steel. Versatile, robust and especially energy-efficien Applications: Processes in the food and beverage	1/1.4408 (AISI 316/CF8M) stainless t.
Data for 50 Hz operation, other values available upon request		industry with moderate hygienic requirements.		
PumpDrive			Reference no. 1969.55	also available in 60 Hz

Vitalobe[®] Rotary lobe pump

	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Design: Sturdy rotary lobe pump in hygienic design, bi-direc horizontal and vertical orientation of connections. Hygienic do wetted components made of 1.4404/1.4409 (AISI 316L/CF3M rotor types and process connections available. Pump set with with a trolley (accessory). Applications: Hygienic and gentle handling of sensitive or food, beverage and pharmaceutical industries as well as in th general process engineering.	esign, CIP/SIP-compatible, all) stainless steel; various geared motor. Also available high-viscosity fluids in the
Frequency inverter		Reference no. 1969.53	also available in 60 Hz

Pumps for power station conventional islands

CHTA / CHTC / CHTD Boiler feed pump

DN Q [m³/h] H [m] p [bar] T [°C] n [min ¹] Data for 50 Hz operat higher values available	Design: Horizontal, high-pressure barrel-type pun double-entry, multistage, with flanges / weld end r Applications: Handling of feed water and conde facilities, generation of pressurized water for bark equipment.	nozzles to DIN and ANSI.
	Reference no. 1860.1	also available in 60 Hz

HGB / HGC[®] / HGD Boiler feed pump

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation higher values available u	Design: Horizontal, radially split, multistage ring single- or double-entry. Applications: Handling of feed water and cond facilities, generation of pressurized water for bark snow guns, etc.	ensate in power stations and industrial
	Reference no. 1850.02	also available in 60 Hz

HGM[®] Boiler feed pump

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation higher values available	Design: Horizontal, radially split, product-lubricated, m radial impellers, axial and radial single-entry inlet. Applications: Handling of feed water in power statio condensate in industrial facilities.	
	Reference no. 1856.02	also available in 60 Hz

YNK Boiler feed booster pump

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation higher values available u	Design: Horizontal, radially split, single-stage, double (booster system) with single or double cast steel volute Applications: Handling of feed water in power statio	e casing.
	Reference no. 1135.021	also available in 60 Hz

LUV[®] / LUVA Boiler recirculation pump

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Higher values availabl	100 - 550 max. 7000 max. 300 max. 350 max. +380 max. 3600 e upon request	stage. Suitable for very high inlet pressure: motor to VDE. Product-lubricated bearings, ASME or IBR.	adial impellers, single-entry, single- to three- s and temperatures. Integrated wet winding , no need for oil supply systems. Design to TRD, forced-circulation, forced-flow and combined- and in solar power towers.
		Reference no. 1128.023	available in 50 Hz and 60 Hz

Pumps for power station conventional islands

WKTB Condensate pump

58

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation, higher values available upon r	150 - 300 max. 1500 max. 370 max. 40 max. +100 max. 1500	Design: Vertical can-type ring-section pump, underfloor assembly on baseframe, multistage, first stage designed as double-entry suction impeller, radial impellers. Flanges to DIN or ANSI. Applications: Pumping of condensate in power stations and industrial systems.
		Reference no. 0361.033

SEZ / SEZT / PHZ / PNZ Tubular casing pump

Q [m³/h] H [m] T [°C] n [min ⁻¹] Data for 50 Hz opera higher values availab	propeller (PHZ) or axial propeller (PNZ). F	
	Reference no. 1471.02	available in 50 Hz and 60 Hz

SNW / PNW Tubular casing pump

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation, higher values available upo	350 - 800 max. 9000 max. 50 max. 10 max. +60 max. 1500	Design: Vertical tubular casing pump with mixed fl (PNW), single-stage, with maintenance-free Residur arranged above or below floor. Applications: Irrigation and drainage systems, sto of raw and pure water, water supply systems, handli	shaft bearings, discharge nozzle rmwater pumping stations, handling
		Reference no. 1481.5 / 1591.5	available in 50 Hz and 60 Hz

Beveron Concrete volute casing pump

Q [m³/s] H [m] Data for 50 Hz operat higher values availabl	Design: Concrete volute casing pump v with maintenance and lubricant-free Res Applications: Coast protection and flo low-lift pumping stations, reservoir filling raw and pure water.	idur bearings.
	Reference no. 1.471.021	available in 50 Hz and 60 Hz

SPY Cooling water pump

	DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operation, higher values available up		Design: Long-coupled, single-stage volute casing pump in back pull-out design. Applications: Drainage, irrigation and water supply systems, handling of condensate, cooling water, service water, etc.
--	--	--	---

Reference n

Pumps for nuclear power plants

RER Reactor coolant pump

DN Q [m³/h] H [m] p [bar] T [°C] n [min ⁻¹] Higher values availab	max. 800 max. 40000 max. 140 max. 175 max. +350 max. 1800 le upon request	Design: Vertical, single-stage reactor coolan plated on the inside, with diffuser; either with supported by motor bearing. Applications: Reactor coolant recirculation	h integrated pump thrust bearing or shaft
		Reference no. 1682.021	available in 50 Hz and 60 Hz

RSR Reactor coolant pump

DN max. 750 Q [m³/h] max. 24000 H [m] max. 215 p [bar] max. 175 T [°C] max. +350 n [min ⁻¹] max. 1800 Higher values available upon request	supported by motor bearing. Applications: Reactor coolant recirculation in BWR).	
	Reference no. 1665.021	available in 50 Hz and 60 Hz

RUV Reactor coolant pump

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Higher values available	max. 650 max. 22000 max. 111 max. 155 max. +350 max. 1800 e upon request	Design: Vertical, single-stage reactor coolan wet winding motor and integrated flywheel. I systems required. Applications: Reactor coolant recirculation (PWR).	Product-lubricated bearings, no oil supply
		Reference no. 1669.021	available in 50 Hz and 60 Hz

PSR Reactor internal pump

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ¹] Higher values available	max. 600 max. 9000 max. 45 max. 75 max. +300 max. 2000 upon request	Design: Vertical pump set integrated in the rewith leak-free, low-maintenance wet winding a Applications: Reactor coolant recirculation	motor.
		Reference no. 1576.021	available in 50 Hz and 60 Hz

RHD Feed water pump

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Higher values available up	125 - 500 max. 6500 max. 1000 max. 150 max. +210 max. 6500	Design: Horizontal, single-stage, double-entry main forged variant. Applications: Main feed water supply (MFWS) in s power plants.	
		Reference no. 1668.023	available in 50 Hz and 60 Hz

Pumps for nuclear power plants

LUV® Nuclear Reactor coolant / reactor water clean-up pump

DN Q [m³/h] H [m] p [bar] T [°C] Higher values available	40 - 600 max. 7000 max. 300 max. 320 max. +430	Design: Vertical pump with integrated motor, for very high inlet pressures and temperatures. Product-lubricated bearings, no need for oil su KTA, etc. Applications: As reactor water clean-up pun coolant pump RCP in boiling water and pressu pump in test facilities.	Integrated wet winding motor to VDE. pply systems. Design to ASME Section 3, np RWCP in boiling water reactors, reactor
		Potoronco no. 1129.022	available in 50 Hz and 60 Hz

RHM Pump for safety-related and auxiliary systems

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Higher values available	max. 150 max. 300 max. 2100 max. 220 max. +180 max. 8000	Design: Horizontal, multistage barrel pull-ou Applications: Core flooding, emergency coc RHRS, chemical and volume control systems C and medium-pressure safety injection systems water systems EFWS, start-up and shutdown f charging.	Jing and residual heat removal systems VCS, control rod drive systems CRDS, high- HPSI / LPSI / MHSI / LHSI, emergency feed
		Reference no. 1666 021	available in 50 Hz and 60 Hz

RVM Pump for safety-related and auxiliary systems

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Higher values available	max. 85 max. 50 max. 200 max. 200 max. +100 max. 6000 upon request	Design: Vertical, multistage barrel pull-out pump. Applications: Core flooding, emergency cooling an RHRS, chemical and volume control systems CVCS, hig injection systems HPSI / LPSI.	,
		Reference no. 0166.021	available in 50 Hz and 60 Hz

RHR Pump for safety-related and auxiliary systems

DN max. 500 Design: Horizontal annular casing pump with forged or cast pressure boundary and		
Q [m³/h] max. 600 H [m] max. 600 P [bar] max. 630 P [bar] max. 630 T [°C] max. 4200 n [min ⁻¹] max. 3600		

RVR Pump for safety-related and auxiliary systems

	DN	max. 500
	Q [m ³ /h]	max. 6000
and the second second	H [m]	max. 190
	p [bar]	max. 63
14	T [°C]	max. +200
200	n [min ⁻¹]	max. 3600
And and the second states.		
135		

Design: Vertical annular casing pump with forged or cast pressure boundary and diffuser.

Applications: Core flooding, emergency cooling and residual heat removal systems RHRS / RNS, ancillary systems, acid feed system and low-pressure injection system LPSI, component cooling water system CCWS, essential service water system ESWS.

Reference no. 1662.021

available in 50 Hz and 60 Hz

Pumps for desalination by reverse osmosis

RPH®-RO Booster pump

HGM®-RO High-pressure pump

DN Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operat higher values availab	Design: Horizontal, radially-split, product-lub radial impellers and plain bearings. Axial and super-duplex stainless steel variant also suital Applications: High-pressure pump for RO so	radial single-entry inlet. Duplex and ole for chilled water applications.
	Reference no. 1582.12	also available in 60 Hz

Multitec®-RO High-pressure pump in ring-section design

	Q [m ³ /h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz and 60	50 - 150 max. 850 max. 1000 max. 100 max. +45 max. 4000	Design: Horizontal, multistage pump in ri discharge nozzle can be turned in steps of super-duplex stainless steel. Applications: High-pressure pump for R	90°. Closed radial impellers. In duplex or
Hyamaster, PumpDrive			Reference no. 1777.5	available in 50 Hz and 60 Hz

Salino® Pressure Center High-pressure pump with integrated energy recovery device

	Q [m ³ /h] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz and 60	max. 23 max. 100 max. +50 max. 1750 Hz operation	Design: Axial piston pump with integrated e super-duplex stainless steel. Product-lubricate Applications: RO seawater desalination for	d (oil-free).
Hyamaster, PumpDrive			Reference no. 1859.81	available in 50 Hz and 60 Hz

Positive displacement pumps

RC / RCV Helical gear pump

	DN	20 - 100
	Q [m³/h]	max. 78
The	H [m]	max. 100
	p [bar]	max. 10
	T [°C]	+5 to +80
	n [min ⁻¹]	max. 1500
	Data for 50 Hz operation	

Design: Helical gear pump, self priming, with by-pass valve, available in close-coupled design, horizontal design with baseplate, or vertical design. With mechanical seal. Applications: Fuel feed, fuel, lube oil and viscous fluids transfer, lubrication systems.

also suitable for 60 Hz operation

IPR Reciprocating piston pump

DN Q [m³/h] H [m] p [bar] T [°C] n [min ⁻¹] Data for 50 Hz operati	80 - 150 max. 150 max. 70 max. 10 +5 to +50 max. 1500	Design: Reciprocating piston pump. Vertical installation, with gearbox to reduce crankshaft speed to below 270 rpm. Applications: Bilge, deck washing and fire-fighting.
		also suitable for 60 Hz operation

Fire-fighting systems

FFS Fire-fighting system

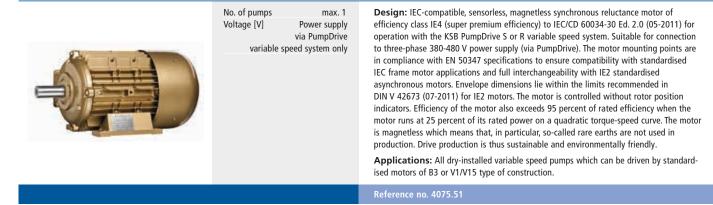
12.0000	DN	32 - 300
Concession of Concession, Name	Q [m ³ /h]	max. 840
and the second s	H [m]	max. 140
	p [bar]	max. 16
	T [°C]	+5 to +50
The second second second	n [min ⁻¹]	max. 3000
A ME IN COLUMN	Data for 50 Hz operation	

Design: Automatic fire-fighting system, consisting of jockey pump and one or several duty pumps, with electric motor or diesel engine. Includes manifold, valves, accessories and control unit. To EN 12845, CEA 4001, UNE-23500, NFPA-20, FM, etc.

Applications: Office buildings, hotels, industry, shopping malls, etc.

also suitable for 60 Hz operation

FFU Fire-fighting system



DN	32 - 350
Q [m ³ /h]	max. 2500
H [m]	max. 150
p [bar]	max. 25
T [°C]	+5 to +50
n [min ⁻¹]	max. 3000
Data for 50 Hz operation	

Design: Automatic fire-fighting system, consisting of pumps with electric motor or diesel engine and control unit. To EN 12845, CEA 4001, UNE-23500, NFPA-20, FM, etc. Applications: Office buildings, hotels, industry, shopping malls, etc.

Automation and drives

SuPremE® Magnetless synchronous reluctance motor of efficiency class IE4 to IEC/CD 60034-30 Ed. 2.0

Control units

Controlmatic E Automatic control unit

No. of pumps Voltage [V]	max. 1 1~230	Design: Single-pump control system for starting, stopping and monitoring pumps. Applications: Water supply systems, in combination with pump types Multi Eco, Multichrom S, Ixo, S 100D, etc.
		Reference no. 5125.53

Controlmatic E.2 Automatic control unit

No. of pumps Voltage [V]	max. 1 1~230	Design: Single-pump control system for starting, stopping and monitoring pumps. Applications: Water supply systems, in combination with pump types Multi Eco, Multichrom S, Ixo, S 100D, etc.
		Reference no. 5125.1785

Cervomatic EDP.2 Automatic control unit

No. of pumps	max. 1	Design: Single-pump control unit for pressure-controlled starting and either pressure-controlled or flow-controlled stopping as well as monitoring pumps.
Voltage [V]	1~230 / 3~400	Applications: In water supply systems using, for example, Multi Eco, Ixo, S 100D and UPA 150C.

Control units

LevelControl Basic 2 Level control unit

 No. of pumps
 max. 2

 [kW]
 max. 22

 Voltage [V]
 1~230 / 3~400

 Higher values available upon request

Design: Level control unit for controlling up to two pumps. Direct starting up to 4 kW, star-delta starting up to 22 kW.

Applications: Tank drainage via float switches, pneumatic or bubbler control in building services and waste water applications.

Reference no. 4041.5

UPA Control Control system for submersible borehole pumps

No. of pumps	max. 1	Desi
[kW]	3	pump
Voltage [V]	1~230 / 3~400	Арр

Design: Single-pump control unit for submersible borehole pumps, submersible motor
pumps and dry-installed pumps.
Applications: Water supply systems, in combination with pump types S 100D,
UPA 150S, etc.

Reference no. 3465.1

hyatronic N Pump control system for cascade starting and stopping

 No. of pumps
 max. 6

 [kW]
 22

 Voltage [V]
 3~400

 Higher values available upon request

Design: Pump control system in control cabinet for cascade starting and stopping of up to 6 pumps on the mains.

Applications: Water supply systems.

Reference no. 0543.5026

Speed control systems

PumpDrive Self-cooling, motor-independent variable-speed system

No. of pumps FI 1 [kW] Voltage [V]	max. 6 per pump / motor 45 3~380 to 480	 Design: Self-cooling frequency inverter which allows the motor speed to be varied continuously by means of standard signals and a field bus. Because PumpDrive is self-cooling, it can be mounted on the motor, on the wall or in a cabinet. Control of up to 6 pumps without an additional controller (with PumpDrive Advanced). Applications: Cooling circuits, filters, water supply systems, heating, ventilation and air-conditioning systems, spray irrigation systems, boiler feed systems, steam generation plants, process engineering circuits, cooling lubricant supply systems, service water supply systems and other process engineering applications.
		Reference no. 4070.5

hyatronic spc Pump control system for continuously variable speed adjustment

······································	No. of pumps Fl [kW] Voltage [V]	max. 1 max. 1 7.5 3~400	Design: Single-pump control system for continuously variable speed adjustment with integrated frequency inverter. Applications: Heating, ventilation, air-conditioning, water supply and drainage systems.
			Reference no. 0973.5

Hyamaster ISB Pump control system for continuously variable speed adjustment

No. of pumps FI [kW] Voltage [V]	max. 8 max. 2 200 3~400	 Design: Control system for pumps with three-phase motors of all types and makes, consisting of a KSB controller with display and control panel and all required power components. Applications: Industrial and process engineering circuits, service water supply, cooling and lubrication, energy supply in cogeneration plants, heat transfer and district heating stations, water extraction and treatment, water supply and waste water disposal.
		Reference no. 1961.5

Hyamaster SPS Pump control system for continuously variable speed adjustment

No. of pumps Fl [kW] Voltage [V]	max. 4 1 per pump 650 3~400	 Design: Control system for pumps with three-phase motors of all types and makes, consisting of a programmable logic controller (PLC) with display and control panel and all required power components housed in a control cabinet. Applications: Process engineering circuits, service water supply, cooling and lubrication systems, cogeneration plants, heat transfer and district heating stations, water extraction and treatment, water supply and waste water disposal.
		Reference no. 1964.5

Monitoring and diagnostic systems

PumpMeter Intelligent pressure transmitter

No. of pumps max. 1 Type see pump type series Installation factory-mounted, IP65 Voltage 24 V DC **Design:** The PumpMeter device is an intelligent pressure transmitter for pumps, with on-site display of measured values and operating data. The device consists of two pressure sensors and a display unit. It records the load profile of the pump in order to indicate any potential for optimising energy efficiency and availability. **Applications:** For monitoring the operation of a centrifugal pump.

Reference no. 4072.5

Amacontrol Monitoring system for submersible waste water pumps

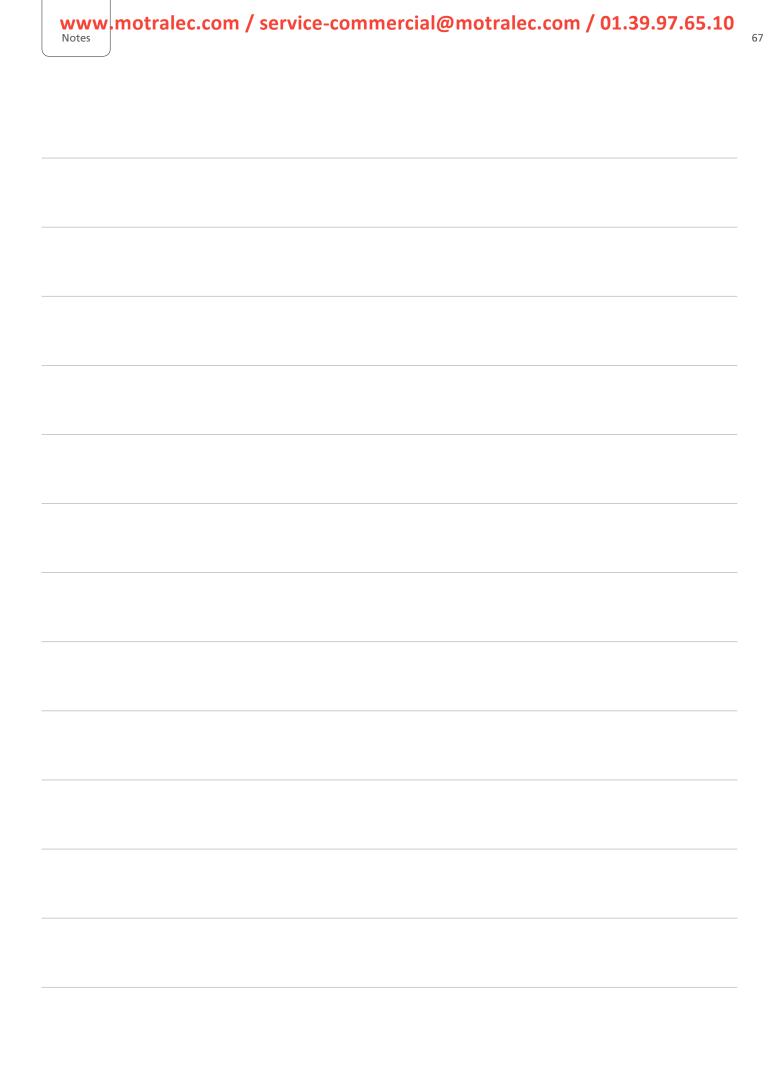
No. of pumps max. 1 Type Amacan Installation mounting plate IP20 Voltage 230 V AC Design: Monitoring system for submersible waste water pumps with shutdown.

Reference no. 2316.5

Control system

BOA-Systronic®

No. of pumps	max. 1
PN	6 / 10 / 16
DN	20 - 200
Voltage [V]	24 VAC
T [°C]	+20 to +120


Higher values available upon request

Design: Energy-saving system for the coordinated operation of pump and control valve. The system provides an all-in solution designed to access untapped hydraulic savings potential. Irrespective of the pump technology used, it allows savings of 50 % in pump electricity while also reducing primary energy costs thanks to lower return flow temperatures. The system can be combined with all control systems and pumps with a 0-10 V control input. Straightforward integration in automation systems with optional BACnet gateway.

Applications: Supply temperature control in HVAC installations with volume flow rates of 0.5 to 185 m³/h and temperature differentials of 3 to 30 °K. Threaded (DN20) or flanged (DN25-DN200) line connections; suitable for upgrading installed systems and for new systems, for connection to all types of heat generators (boiler or district heating), all main feed manifolds, all control systems, all supply temperatures.

Reference no. 7540.1

